Drug Interactions in Stem Cell Transplantation

Jeannine McCune, PharmD, BCOP University of Washington Fred Hutchinson Cancer Research Center

Learning Objectives

- Explain the common metabolic pathways in the liver
- Identify approaches to overcome drug interactions seen in HSCT
 - Identify those drug interactions of importance
 - Understand how to preemptively prevent drug interactions from occurring

When is a drug interaction in HCT recipients important?

- Drug interaction leads to an undesired outcome, whether it be ↓ efficacy or ↑ toxicity
- Type of interactions
 - Pharmaceutical
 - Pharmacokinetic
 - Pharmacodynamic

The challenges unique to HCT patients are

- The concentration-effect (i.e., pharmacodynamic) relationships are rarely defined
- Degree of an interaction (and thus its significance) rarely described
 - Cytokines influence regulation
 - Interpatient variability in the interaction
- When an adverse drug interaction occurs, we often lack the pharmacokinetic data to explain it

Quick review of pharmacokinetic-based drug interaction basics

Drug metabolizing enzymesDrug Transporters

Pharmacology is Multifactorial

- Can affect both the pharmacokinetics and pharmacodynamics
- Factors include...
 - Age
 - Sex
 - Ethnicity
 Weight
 - Condition being treated
 - Pharmacogenetics
 - Idiosyncrasy
 - Drug interaction

Pharmacokinetic Parameters

Absorption

• The rate at which a drug leaves the site of administration and the extent to which it occurs.

Distribution

- Process of reversible transfer of a drug to and from the site of measurement.
- Modifying factors:
 - blood flow
 - plasma protein binding
 - diffusion
 - solubility

Volume of Distribution

- A measure of the apparent space in the body available to contain the drug.
- Relates the amount of drug in the body to the concentration of drug in the blood.

Vd = <u>Amt of drug in body</u> = <u>Dose</u> Conc. of drug in blood Concentration

Elimination Processes

Metabolism

- predominately liver
- Other sites: kidney, lung, GI, plasma

Excretion

- Kidneys and GI
- Other sites: milk, sweat, saliva, tears

Biotransformation (Metabolism)

- Theory:
 - Drug inactivation
 - Increased elimination from the body
- However:
 - Metabolites may have biological activity; similar or different than parent
 - May contribute to toxic and/or beneficial effects

Phase I metabolism:

- Oxidation, reduction, hydrolysis
- Cytochrome P450 family of enzymes
 - 7 primary enzymes responsible for majority of drug metabolism:
 - Can predict drug interactions based on knowledge of metabolites
 - CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4

The Cytochrome P450 (CYP) Enzyme System

- Phase I enzymes
 - Liver
 - several different isozymes located in endoplasmic reticulum
 - several university sozymes located in endoplasmic reticulum
 e.g., CYP1A2, CYP2A6, CYP2A6, CYP2C, CYP3A
 Extrahepatic: intestine (CYP3A4/5), kidney (CYP3A5), brain (CYP2B6), lungs, breast
- Large source of drug interactions
 - Differences in enzyme regulation between animals humans Variety of in-vitro methods
 - Inhibition: cDNA expressed or human microsomes
 Induction: human hepatocytes or some constructed cell lines In-vivo methods
 - healthy volunteer studies with 'cocktails' largely used but effects of cytokines (e.g., IL6) upon PXR function which contributes to regulation of CYP3A/CYP2B6/pgp induction

Examples of important CYP in HCT

Drug	Substrate for	Reaction
Cyclophos-	2C9, 2C19	Activation to 4hydroxyCY (HCY)
phamide (CY) ¹	2B6, 3A4/5*	
	3A4/5	Detoxification to dechloroCY
Imatinib ²	3A4/5	Elimination
Prednisone	3A4/5	и
Dexamethasone	3A4/5	ш
Cyclosporine	3A4/5	и
Tacrolimus	3A4/5	и
Sirolimus	3A4/5	и
¹ Re	en Cancer Research 1997; Huang B	iochem Pharmacol 2000; Qiu Clin Pharm Ther 2004. 2Package insert.

Effect up	oon CYP		
Drug	Effect	Model*	Reference
CY	↑CYP3A4, CYP2B6	1	Lindley Drug Metab Disp
	↓ CYP3A4	I	Moore Clin Pharmacol Ther
Imatinib	↓ CYP2C9, CYP2D6	I.	Package insert
	CYP3A4/5	I, HV	", Obrien Br J Cancer 2003
Prednisone	?↑CYP3A4/5		
DEX	↑ CYP3A4/5	I, HV	McCune Clin Pharm Ther
*Models. I:in cancer patie		nealthy vo	lunteers; C:PK study in

Phase II Metabolism

- Term coined to represent metabolism occurring after oxidation, reduction or hydrolysis associated with bioactivation
 - Many drugs don't require Phase I metabolism
- Functional group created conjugated to less toxic or inactive compound

Phase II: Conjugation reactions

- Acetylation (Procainamide, sulfonamides)
- Glutathione *S*-transferase
 - Mediate conjugation of electrophilic
 - compounds to glutathione
 - Important detoxifying pathway for alkylating agents

Glucuronidation

- Most common conjugation reaction for drugs
- UGT (UDP-glucuronosyl transferase)
- Conjugation of endogenous substances,
- bilirubin, mycophenolic acid, morphine
- Sulfation

ATP-binding cassette (ABC) superfamily

Transporter	Substrate
ABCB1 (MDR1)*	calcineurin inhibitors, sirolimus
ABCC1 (MRP1)	etoposide, glutathione conjugates of corticosteroids
ABCC2 (MRP2)	CEPM (CY metabolite),
	Mycophenolic acid
ABC C3, C4, C5	Methotrexate
ABCG2 (BCRP)	
*codes for pglycoprotein	(pgp)

Pauli-Magnus Pharmacogenetics 2003; 13: 189; Sekine Annals of Oncology 2001; 12: 1515; Qiu J Pharmacol Exner Ther 2004: Oleschuk Am J Physiol Castrointest Liver Physiol 2003 Feb; 284(2):G280:

Additional Transporters

- organic anion transporting polypeptide (OATP)
 - methotrexate, opioids, corticosteroid metabolites
- organic anion transporters (OAT)
- beta-lactams, metabolites of corticosteroids, NSAIDs
 equilibrative nucleoside transporter 1 (ENT)
- fludarabineconcentrative pyrimidine-preferring nucleoside
- transporter 1 (CNT)

Pauli-Magnus Pharmacogenetics 2003; 13: 189; Sekine Annals of Oncology 2001; 12: 1515; Slattery AAPS 2002; Oleschuk Am J Physiol Gastrointest Liver Physiol 2003 Feb;284(2):6280;

Excretion

- Drugs are eliminated from the body unchanged or as metabolites
- Polar >>>>>Lipid soluble drugs
- Involves
 - Glomerular filtration
 - Active tubular transport
 - Passive tubular absorption

Clearance

- A measure of the body's ability to eliminate drugs.
- May be regarded as the volume from which all the drug would appear to be removed per unit time
- Clearance is the PK parameter most useful for evaluation of an elimination mechanism
- Described in terms of eliminating organ
 - hepatic clearance
 - renal clearance
 - pulmonary clearance

Elimination Half-Life

• The time is take for the amount of drug in the body to be reduced by 50%.

T_{1/2} =
$$\frac{0.693 \cdot Vd}{CI}$$

	Plasma Concentration	f-life ons Drug with T _{1/2} = 12 hrs
Dose	100 mg	200 mg
Co	20 µg/mI	40 μg/ml
C_{12hr}	10 μg/ml	20 µg/ml
$C_{_{24hr}}$	5 μg/ml	10 μg/ml
$C_{_{36hr}}$	2.5 μg/ml	5 μg/ml
C_{48hr}	1.2 μg/ml	2.5 μg/ml
C _{60hr}	< 1 µg/ml	1.2 μg/ml
C _{72hr}	< 1 µg/ml	< 1 µg/ml

Steady State

- Css = the concentration at which the rate of drug input is equal to the rate of drug elimination
 - Can be defined as area under the curve/dosing interval (busulfan)
- Takes approximately 5 T_{1/2} to reach steady state
- Take approximately 5 T_{1/2} to completely eliminate a drug after discontinuation
- Css is dependent on dosage and clearance

Learning Objectives

- Explain the common metabolic pathways in the liver
- Identify approaches to overcome drug interactions seen in HSCT
 - Identify those drug interactions of importance
 - Understand how to preemptively prevent drug interactions from occurring

GVHD Medications

Cyclosporine, Tacrolimus, Mycophenolate mofetil, Methotrexate, Sirolimus, Prednisone

Less commonly used GVHD medications

- Immunomodulating modalities: mTOR-inhibitors, thalidomide, hydroxychloroquine, vitamin A analogs, clofazimine, rituximab, alemtuzumab, etanercept
- Cytostatic agents: mycophenolate mofetil, methotrexate, cyclophosphamide, pentostatin

Pidala BBMT 2011, 17(10):1528; ²Ferrara Lancet 2009, 373: 9674; Holler Best Pract Res Clin Haematol. 2007 Jun;20(2):281-94, Wolff BBMT 2011;17(1):1-17

The interactions discussed

- Pharmacokinetic interactions relevant to GVHD prophylaxis and treatment
 - Will discuss herbal preparations, but recall they are unique because of potential pill to pill variability in content, for fungal contamination, immunologic properties.....
- Omitting others not because they are less important but they may be
 - more easily identified (e.g., the opioids because of close concentration effect relationship)
 more broad therapeutic index of the medication (e.g., and the index of the medication (e.g., and the index of the medication (e.g., and the index of the medication)
 - most antibiotics)

Effect of food/herbs	
AED	Effect
Grapefruit juice	\downarrow intestinal CYP3A, \leftrightarrow pgp
Phytoestrogens/flavonoids	competitively ↓ABCG21
St. John's wort	↑ СҮРЗА4, рдр
Garlic	↑ CYP3A4
Cancer Research 2004; 64: 4346; Leather BMT 2004; 3	33:137.

Calcineurin Inhibitors

- Pharmacodynamic relationships
 - ↓CyA/TAC ↑risk of aGVHD
 - CyA/TAC ^nephrotoxicity occurs even with targeting trough CyA or TAC trough
 - concentrations
- Substrates for CYP3A4/CYP3A5 and pglycoprotein

N Engl J Med 1988; 319: 65; Ghalie Annals Pharmacother 1994; 28: 379; Wingard BBMT 1998

Calcineurin Inhibitors

- Personalized through trough concentrations of cyclosporine or tacrolimus, but considerable interpatient variability in efficacy and toxicity remain
 - Cyclosporine concentrations poorly correlate with calcineurin activity in HCT and kidney transplant recipients¹
 - Calcineurin activity higher in kidney transplant patients receiving tacrolimus vs. cyclosporine²
- Calcineurin activity
 - Methods available for over 15 years, with some recent methodologic advances
- But, calcineurin activity, assessed using the newer methods, have yet to be associated with clinical outcomes in solid organ
- Within HCT recipients³
 Within HCT recipients, two studies have conflicting findings regarding the association between CN activity and acute GVHD¹
- ¹Sanquer S et al. Transplantation 2004:77(6):854-8. Pal SY et al, Blood 1994;84(11):3974-9 *Koefoed-Nielsen et al. Transplant International 2006;19: 821-7. ³Jorgensen KA et al. Scandinavian journal of immunology 2005;72(3):38. Battern MJ et al. Call proliferation 2007;40(1):50-63.

Pharmacogenomics of renal dysfunction in HCT patients receiving calcineurin inhibitors

- Various pharmacogenomic associations found in solid organ transplant patients
- ABCB1 and CYP3A5 responsible for the renal disposition of ÷. calcineurin inhibitors
- Investigated pharmacogenomic associations in the multidrug resistance (ABCB1) and cytochrome P450 3A5 (CYP3A5) genes and acute kidney injury (AKI) and chronic kidney disease (CKD) in 121 CY/TBI conditioned patients
- No pharmacogenomic associations found
 - Patients genotyped for *CYP345*1>*3* and *ABCB1* single nucleotide polymorphisms (SNPs, 1199G>A, 1236C>T, 2677G>T/A, and 3435C>T).
 - AKI occurred in 48 of 121 patients (39.7%) and CKD in 16 of 66 patients (24.2%)
- Haplotype estimation and univariate association analyses performed because of strong ABCB1 linkage disequilibrium

ahl EL...McCune JS. Pharmacogenomics J. 2008 Aug; 8(4): 248-55. Epub 2007 Aug 14

P-glycoprotein

- ATP-dependent drug transporter (ABCB1)
- Transports a large number of structurally diverse agents primarily cationic or neutral hydrophobic drugs
- Limits oral drug bioavailability
- Transports drugs out of renal tubular epithelial cells and mesangial cells on the glomerulus

Medication that increase CyA or TAC plasma concentrations

	Effe	ect
Agent	CYP3A	pgp
Amiodarone		\downarrow
Clarithromycin, Erythromycin	\downarrow	\downarrow
Diltiazem, Nicardipine, Verapamil	\downarrow	\downarrow
Fluconazole, Itraconazole, Ketoconazole, Voriconazole	\downarrow	\downarrow
Grapefruit Juice	\downarrow	
Chloramphenicol	?	?
Theophylline	?	?
Imatinib	\downarrow ?	
 Management: Monitor concentrations, 	\downarrow dose of	CNI PRN
Hebert. Metabolic Drug Interactions 2000 Ch 37; Shimada Tran	splant Internatio	onal 2003.

Medication that <u>decrease</u> CyA or TAC plasma concentrations

Agent	CYP3A Effect	P-gp Effect
Carbamazepine	\uparrow	
Phenobarbital	\uparrow	\uparrow
Phenytoin	\uparrow	\uparrow
Rifampin	\uparrow	$\uparrow \downarrow$
St. John's Wort	\uparrow	\uparrow
CY/cytarabine	↑ (?)	?

Methotrexate

- Pharmacodynamics
- Interactions
 - Avoid salicylates, NSAIDs and probenecid

 [↑] nephrotoxicity, bone marrow suppression, mucositis
 - TMP/SMX, penicillins

McDonnell (Hansten & Horn; Dorr)

Pharmacodynamics After MMF Administration to HCT Patients

- Evaluated in heterogenous populations, differing by recipient age, conditioning regimen, graft sources
- Acute GVHD associated with low total MPA trough concentrations¹ or low free MPA AUC (but not trough)²
- Graft rejection associated low total MPA trough concentrations² or total MPA Css (but not trough)³
- Low T cell chimerism associated with low total MPA Css³

¹Osunkwo I, et al. Biol Blood Marrow Transplant. 2004;10:246-58. ²Jacobson P, et al. Clin Pharmacol Ther. 2005;78:486-500; ³Giaccone L, et al. Blood. 2005;106:4381-8.

Mycophenolate Mofetil Drug Interactions

- Antacids (Magnesium and Aluminum Hydroxides)¹
- ↓ MPA Cmax by 33% & ↓ 24 hour AUC 17%
 Ferrous Sulfate
 - J MPA AUC 90% in one cross-over study,² but another study in renal transplant patients suggests no interaction³
- Calcium Polycarbophil (e.g. Fibercon) ↓ MPA AUC 25-50%
- No effect on TMP/SMX, acyclovir, ganciclovir, oral contraceptives¹

¹⁸Ullingham Clin Pharmacokinetics 1998; 34: 429; Br J Clin Pharmacol 1996; 41:513-6 ²Clin Pharmacol Ther 2000;68:613-6; ³Mudge Transplantation 2004; 77: 206; CellCept Package Insert J Clin Pharmacol 2002; 42:127 2000;68:613-6; ³Mudge Transplantation 2004; 77: 206; CellCept Package Insert J Clin Pharmacol 2002; 42:127

Mycophenolate Mofetil Drug Interactions

CyA

- \downarrow AUC of MPA and \uparrow AUC of MPA glucuronide
- Disrupts enterohepatic recirculation by affecting transport

TAC

- May inhibit UGT
- Management: If switch from CyA to TAC, \downarrow MMF dose

her Drug Monitor 2002, 24: 598. Shipkova Ther Drug Monitor 2001; 23: 717; Sha

Sirolimus

- Substrate for CYP3A4/5 & p-glycoprotein
 Similar drug interactions as tacrolimus and cyclosporine
- Effect of other immunosuppressants upon sirolimus dose-normalized Ctrough
 - not affected by methylprednisolone pulses (500-3000 mg)
 - higher in patients on cyclosporine vs. tacrolimus

Sirolimus

- Substrate for CYP3A4/5 & pglycoprotein
- Factors important in drug interactions similar to those important for tacrolimus and cyclosporine

Cattaneo. Am J Transplantation 2004; 4: 1345.

 Dose-normalized Ctrough higher in patients on cyclosporine vs. tacrolimus

Corticosteroids

- In general, steroid metabolism involves sequential hydroxylation followed by conjugation to water-soluble metabolites
- Urinary elimination of the 6 β-hydroxy metabolites makes up 8-10% of the dose for prednisone
- 6 β-hydroxylation occurs via CYP3A4 and CYP3A5 but is a relatively minor pathway
- P-glycoprotein appears to be involved in the transport of some steroids (cortisol, dexamethasone, methylprednisolone)

Umbilical Cord Blood

- Use in adults limited by small cell dose, resulting in delayed engraftment
- Double cord blood leads to rapid neutrophil recovery with one single cord ultimately "winning"
 - Have increased incidence of acute GVHD, longterm thrombocytopenia in subset of patients
- Many unanswered questions about HLA matching, RIC, minimum cell dose, immune reconstitution, ex vivo expansion

ner J, et al. Biol Blood Marrow Transplant. 2006;12:1206-17

CY Pharmacodynamics Differ With Conditioning Regimens

- With TBU/CY, there were no statistically significant associations between the AUC of CY or its metabolites and liver toxicity, non-relapse mortality, relapse, or survival (all P > .15)
 - Oral busulfan doses targeted to Css 800-900 ng/mL
 - Personalization of CY doses based on its pharmacokinetics in TBu/CY unlikely to be beneficial
- CY, like busulfan, pharmacodynamics differ between conditioning regimens
- Lower toxicity by using bu/fludarabine regimen?

JS, et al. Biol Blood Marrow Transplant. 2007;13:853

Conclusions

- Drug interactions are frequent in HCT patients
- Changes in CYP cause many pharmacokinetic drug interactions, but other types of interactions are also relevant
- Within GVHD prophylaxis, the routine use of monitoring for calcineurin inhibitors can guide management.
- Further pharmacodynamic data needed to know impact of interactions with mycophenolate mofetil, corticosteroids and sirolimus