Population pharmacokinetics of antithymocyte globulin (ATG) in children receiving allogeneic-hematopoietic cell transplantation: towards individualized dosing to improve

survival

Rick Admiraal, MD PhD-student University Medical Center Utrecht Leiden University Medical Center Leiden Academic Center for Drug Research The Netherlands

Introduction: Challenges in pediatric HCT

- Reducing the toxicity of HCT:
 - Short term toxicity
 - Long term toxicity
- Improving efficacy
 - Better disease control

Balancing optimal disease control and reduced toxicity

Introduction: ATG (Thymoglobulin®)

- In vivo lymphodepletion
- Thymoglobulin[®] (anti-thymocyte globulin, ATG)
 - Different brands ATG; horse or rabbit derived
- Polyclonal rabbit derived IgG antibody
- Very broad range of targets
 - T-lymphocytes
 - Other lymphocytes
 - Epithelium etc.
- ~9% of ATG directed against human targets (active ATG)

Project aim

- Describing the pharmacokinetics of active Thymoglobulin in pediatric HCT
- Explore the influence of weight and other factors on PK
- · First step in development of individualized dosing regimen
- Evaluate current dosing regimen of Thymoglobulin®

Learning Objective

Describe the effect of weight on the pharmacokinetics of active Thymoglobulin[®]

Methods

- Patients treated from 2004 to 2012 at two pediatric • SCT-units in the Netherlands
- Serum active Thymoglobulin® concentrations quantified by flow cytometry
- Population pharmacokinetic (PK) modelling (NONMEM)
 Population mean
- Between patient variabilityCovariates influencing variability
- Model validation with advanced methods (bootstrap, NPDE)
- Simulations

Results. patient characteristics				
	Leiden	Utrecht	Total	
lumber of patients (n)	153	114	267	
lumber of HCTs (n)	159	121	280	
Aale sex (%)	67	57	62	
ge (years)	6.5 (2.7-12)	5.9 (1.7-13.9)	6.5 (2.3-12.6)	
Veight (kg)	21 (13-38)	20 (12-46)	21 (13-40)	
lumber of samples [n (mean per patient)]	2352 (15)	761 (6)	3113 (11)	
tarting day ATG (days before transplantation)	5 (4-6)	5 (4-7)	5 (4-6)	
Diagnosis (%)				
Malignancy	50	42	46	
Immune deficiency	16	24	19	
Bone marrow failure	4	10	6	
Metabolic disease	0	21	9	
Benign hematology	30	1	18	
Auto-immune disease	0	2	1	
tem cell source (%)				
Bone marrow	63	29	48	
Peripheral blood stem cells	23	5	15	
Cordblood	14	60	34	
Cordblood plus haplo or 2nd cordblood	0	6	2	
eucocyte count before conditioning (x 10^9)	3.7 (2.3-5.7)	4.5 (2.7-7.1)	4 (2.3-6.4)	
eucocyte count before conditioning (x 10^9)	3.7 (2.3-5.7)	4.5 (2.7-7.1)	4 (2.3-6.4)	

Audience Response Question

A cumulative dose of 10mg/kg Thymoglobulin[®] over 4 days, the current dosing regimen, leads to a constant exposure in all age groups

A) True

B) False

Conclusions

- A model was developed and validated, describing active Thymoglobulin[®] pharmacokinetics, yielding accurate predictions
- Weight and baseline lymphocytes important factors influencing the PK
- Current dosing regimen results in increasing exposure with higher weight
- First step in developing an individualized dosing regimen

Acknowledgements				
University Medical Center Utrecht Jaap Jan Boelens Marc Bierings Toine Egberts	UMC Utrecht			
Leiden University Medical Center Robbert Bredius Maarten van Tol Els Jol Arjan Lankester Anja Janssen	L U M C			
Leiden Academic Center for Drug Research Catherijne Knibbe Charlotte van Kesteren Mijndert Danhof	LACDR	TW		
ZonMW scholarship	ZonMw			