Population pharmacokinetics of anti-thymocyte globulin (ATG) in children receiving allogeneic-hematopoietic cell transplantation: towards individualized dosing to improve survival

Rick Admiraal, MD
PhD-student
University Medical Center Utrecht
Leiden University Medical Center
Leiden Academic Center for Drug Research
The Netherlands

Introduction: Challenges in pediatric HCT

- Reducing the toxicity of HCT:
 - Short term toxicity
 - Long term toxicity
- Improving efficacy
 - Better disease control

Balancing optimal disease control and reduced toxicity

Introduction: ATG (Thymoglobulin®)

- In vivo lymphodepletion
- Thymoglobulin® (anti-thymocyte globulin, ATG)
 - Different brands ATG; horse or rabbit derived
- Polyclonal rabbit derived IgG antibody
- Very broad range of targets
 - T-lymphocytes
 - Other lymphocytes
 - Epithelium etc.
- ~9% of ATG directed against human targets (active ATG)
Introduction: ATG (Thymoglobulin®)

- Critical therapeutic window:
 - Underdosing
 - GvHD
 - Rejection
 - Overdosing
 - Delayed immune reconstitution, infection
 - More relapse (Graft vs Leukemia)

Introduction: outcome

Pediatric UCB transplants
- No ATG
- Early ATG (day -9 to -5)
- Late ATG (day -5 to 0)

Comparable EFS/OS

Introduction: PK/PD

Dose is often a poor descriptor of response
Project aim

- Describing the pharmacokinetics of active Thymoglobulin in pediatric HCT
- Explore the influence of weight and other factors on PK
- First step in development of individualized dosing regimen
- Evaluate current dosing regimen of Thymoglobulin®

Learning Objective

Describe the effect of weight on the pharmacokinetics of active Thymoglobulin®

Methods

- Patients treated from 2004 to 2012 at two pediatric SCT-units in the Netherlands
- Serum active Thymoglobulin® concentrations quantified by flow cytometry
- Population pharmacokinetic (PK) modelling (NONMEM)
 - Population mean
 - Between patient variability
- Covariates influencing variability
- Model validation with advanced methods (bootstrap, NPDE)
- Simulations
Results: patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Leiden</th>
<th>Utrecht</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>153</td>
<td>114</td>
<td>267</td>
</tr>
<tr>
<td>Number of HCTs</td>
<td>159</td>
<td>121</td>
<td>280</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>67</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Age (years)</td>
<td>6.5 (2.7–12)</td>
<td>5.6 (2.3–13)</td>
<td>6.0 (2.9–12)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>21.3 (13–38)</td>
<td>20.3 (12–46)</td>
<td>21.3 (13–45)</td>
</tr>
<tr>
<td>Number of samples (n) (mean per patient)</td>
<td>20.00 (16)</td>
<td>11.0 (8)</td>
<td>20.5 (12)</td>
</tr>
<tr>
<td>Starting day (d) (day before transplantation)</td>
<td>5 (4–6)</td>
<td>5 (4–7)</td>
<td>5 (4–6)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignancy</td>
<td>50</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>Immune-deficiency</td>
<td>16</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Bone-marrow-failure</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Metabolic-disease</td>
<td>0</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Benign hematology</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Auto-immune disease</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stem cell source (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow</td>
<td>63</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>Peripheral blood stem cells</td>
<td>23</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Cordblood</td>
<td>14</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>Cordblood plus haplo or 2nd cordblood</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leukocyte count before conditioning (x 10^9)</td>
<td>0.84 (0.29–1.19)</td>
<td>0.87 (0.26–2.71)</td>
<td>0.87 (0.26–2.71)</td>
</tr>
</tbody>
</table>

Shown as median (interquartile range) unless otherwise specified.

Results: PK-model 1

Dose

Central volume of distribution

Body weight

Peripheral volume of distribution

Body weight

Baseline lymphocytes

MAX

Results: PK-model 2

Tm (Intercompartmental distribution)

Km (Clearance)
Results: Model performance 1

Body weight = 9kg

Cumulative 10 mg/kg

Results: Model performance 2

1.5-2.5 years old

2.5-5 years old

Simulations

- Current dosing regimen
 - Cumulative 10 mg/kg Thymoglobulin® over 4 days
- Higher exposure with higher weight
Audience Response Question

A cumulative dose of 10mg/kg Thymoglobulin® over 4 days, the current dosing regimen, leads to a constant exposure in all age groups

A) True
B) False

Conclusions

- A model was developed and validated, describing active Thymoglobulin® pharmacokinetics, yielding accurate predictions
- Weight and baseline lymphocytes important factors influencing the PK
- Current dosing regimen results in increasing exposure with higher weight
- First step in developing an individualized dosing regimen

Perspectives

- Pharmacokinetic-pharmacodynamic (concentration-effect) relationship needs to be explored
- Development of a dosing regimen to reach optimal exposure

Multivariate predictors for worse overall survival:
- Post-HCT AUC >20, p=0.024
- Mismatched donor, p=0.01
- Malignancy, p=0.007

Log-rank p=0.026
Acknowledgements

University Medical Center Utrecht
Jaap Jan Boelens
Marc Bierings
Toine Egberts

Leiden University Medical Center
Robbert Bredius
Maarten van Tol
Els Jol
Arjan Lankester
Anja Janssen

Leiden Academic Center for Drug Research
Catherijne Knibbe
Charlotte van Kastelren
Mijndert Danhof

ZonMW scholarship