2013 American Society of Hematology (ASH) Meeting Updates

Susannah E. Koontz, Pharm.D., BCOP Principal & Consultant Koontz Oncology Consulting LLC Houston, TX

Disclosures

- I have received consulting fees from Sigma Tau Pharmaceuticals, Inc. and LexiComp, Inc.
- I will be discussing the off-label use of medications

Objectives

- At the conclusion of the presentation, with respect to the 2013 ASH Annual Meeting, the participant will be able to:
 - Summarize research findings of key abstracts pertinent to the field of hematopoietic cell transplantation (HCT)
 - List important breakthroughs in hematology expected to impact HCT practice
 - Identify select data presented as part of the scientific programming of interest to HCT pharmacists
 - Summarize key points and data from select sessions of the education program applicable to the care of HCT patients

1

55th ASH Annual Meeting & Exposition

- Held December 6-10, 2013 in New Orleans, LA
- Numbers
 - More than 4500 abstracts
- · Main themes/topics
 - Personalized medicine
 - How to pick the best therapy for an individual patient
 - Precision medicine
 - Identification of targets to identify novel therapies

http://www.cancernetwork.com/ash-2013/ash-annual-meeting-highlights-exciting-advances-hematolog

Select Data Pertaining to HCT

- Areas of discussion
 - Approach/role/type of transplant
 - Conditioning regimens
 - Graft-versus-host disease (GVHD)
 - Supportive care
 - Relapse
 - Survivorship
 - Patient populations/referrals
- Abstracts
 - Oral presentation indicated by "O" after number
 - Poster display indicated by "P" after number

Approach/Role/Type of Transplant

Approach/Role/Type of HCT

- Abstract 158 O Encouraging Outcomes In Older Patients (Pts) Following Nonmyeloablative (NMA) Haploidentical Blood or Marrow Transplantation (haploBMT) With High-Dose Post-transplantation Cyclophosphamide (PT/Cy)
- Abstract 302 O Alternative Donor Hematopoietic Transplantation For Patients Older Than 50 Years With AML In First Complete Remission: Unrelated Donor and Umbilical Cord Blood Transplantation Outcomes
- Abstract 160 O Unrelated Cord Blood Transplantation For Infant Acute Leukemia Diagnosed Within 1 Year of Age: Outcomes and Risk Factor Analysis On Behalf Of Eurocord and PDWP-EBMT

Haploidentical HCT in Older Patients (158)

- · Obstacles to success with allo-HCT1
 - Lack of a matched donor
 - Disproportional cases of hematologic malignancies in older patients
- Related haplo-HCT can overcome obstacles, but historically²:
 - High rate of transplant-related mortality (TRM)
 - Older recipient age associated with poorer leukemia-free survival (LFS)
- Reduced-intensity conditioning (RIC) related haplo-HCT has been found to be safe and effective³
 - Incorporation of post-transplant cyclophosphamide (PT/Cy)

1. Fuchs El. Hematology. 2012;2012:230-36. 2. Szydlo R, et al. J Clin Oncol. 1997;15:1767-77. 3. Luznik L, et al. Biol Blood Marrow Transplant. 2008;14:541-50.

Haploidentical HCT in Older Patients (158)

- Study
 - Rationale
 - PT/Cy reduces risks of haplo-HCT
 - Limited data on haplo-HCT in older patients
 - Objective
 - Evaluate impact of older patient age on outcomes following RIC related haplo-HCT that utilizes PT/Cy
- Eligibility
 - Age 50-75 years with a hematologic malignancy
 - No prior allo-HCT
 - First degree relative or half-sibling donor
 - Haploidentical at HLA-A, -B, -Cw, -DRB1, -DQB1

samon YL, et al. *Blood*. 2013;122(21): Abstract 158.

Haploidentical HCT in Older Patients (158) Patient Characteristics1 Characteristic N = 273 Age, years 50-59 ≥ 60 60-69 70-75 119 (44%) 154 (56%) 127 (47%) 27 (10%) Diagnosis Lymphoma Acute leukemia or myelodysplastic syndrome (MDS) Myeloproliferative disorder (MPD) Myeloma 153 (56%) 96 (35%) 17 (6%) 7 (3%) Prior auto-HCT 41 (15%) HCT-Comorbidity Index high risk (≥ 3) 138 (51%) Disease risk index (DRI) category² Low risk Intermediate risk High risk 32 (12%) 197 (72%) 44 (16%)

Haploidentical HCT in Older Patients (158)

L. Kasamon YL, et al. *Blood.* 2013;122(21): Abstract 158. 2. Armand P, et al. *Blood.* 2012;120:905-13.

HCT Characteristics

Characteristic	N = 273		
Regimen			
Flu/Cy/TBI	98%		
2 doses Cy/MMF/Tacro	96%		
Bone marrow graft	99.6%		
Total nucleated dose infused/ kg, median	4.03 x 10 ⁸		
CMV mismatch	110 (41%)		
Post-HCT rituximab	55/126 B cell (44%)		
CMV – cytomegalovirus, Cy – cyclophosphamide, Flu – fludarabine, Tacro – tacrolimus, TBI – total body			

n YL, et al. Blood. 2013;122(21): Abstract 158.

Haploidentical HCT in Older Patients (158)

- · Safety data
 - Rapid recovery of counts

 Neutrophil recovery

 Median time of 16 days

 89% recovered by D +30
 - 89% recovered by D +30

 Platelet recovery
 Median time of 26 days
 85% recovered by Day +60

 Low risk of acute GVHD (aGVHD)

 Grade II-IV = 32% Grade III-IV = 3%

 Low risk of chronic GVHD (cGVHD)

 12% at 1 year

 - Low risk of non-relapse mortality (NRM)

 NRM at 6 months = 11% Relapse at 1 year = 37%

Kasamon YL, et al. Blood. 2013;122(21): Abstract 158.

Haploidentical HCT in Older Patients (158)

- Outcome data
 - Comparable outcome of older patients to patients in their 50's (median follow-up of 2.1 years)

	Age, years	Number	Estimated 2-year Progression- Free Survival (PFS)	Estimated 2-year Overall Survival (OS)
Г	50-59	119	39%	51%
Г	60-69	127	36%	56%
	70-75	27	39%	44%

- NRM was comparable across all age groups
 Patients age 70-75 years old (n = 27)
 4 non-relapse deaths (15%)
 9 relapses (33%)
 14 alive without relapse (52%) at a median of 11 months after HCT

n YL, et al. Blood. 2013;122(21): Abstract 158.

Haploidentical HCT in Older Patients (158) DRI useful for risk stratification in RIC haploBMT with PT/Cy OVERALL SURVIVAL BY DRI CATEGORY Low risk (n = 32) ____Int. risk (n = 197) High risk (n = 44) Independent association with PFS (p = 0.01) BMT year (p < 0.001) and CMV status (p ≤ 0.05) also significant

Haploidentical HCT in Older Patients (158)

Conclusions

n YL, et al. *Blood*. 2013;122(21): Abstract 158.

- Advanced age does not appear to prohibit HCT in patients that are otherwise eligible for the procedure
- No apparent decrement in overall outcomes in older patients compared to those in their 50's
- With likelihood of not having a suitable matched sibling donor, haplo-HCT may be an attractive option
 - · Toxicities with haplo-HCT utilizing PT/Cy are similar to those seen with matched HCT

Kasamon YL, et al. *Blood*. 2013;122(21): Abstract 158. 2. H Wildes TM, et al. *J Natl Compr Canc Netw*. 2014;12:128-36.

Alternative Donor HCT in Older AML (302)

- Background^{1,2}
 - Alternative donor HCT poorly studied in older patients with AML
 - Lack of available healthy related donors
 - Previous studies suggest benefit with unrelated donor HCT in this patient population
- CIBMTR/Eurocord study³
 - 740 patients (≥ 50 years old, AML in CR1)

 - 1st alloHCT from non-family donors

 Unrelated BM or PBSC (URD) (HLA match of 7-8/8) = 535

 Unrelated cord blood (UCB) = 205

Yee KW, et al. Expert Rev Hematol. 2010; 3:755-74. 2. Poliyea DA, et al. Br J Haematol. 2011;152:524-42. 3. Weisdorf DJ, et .Blood. 2013;122[21]: Abstract 302.

Alternative Donor HCT in Older AML (302)

Patient
Demographics

	URD (8/8)	URD (7/8)	UCB
Number	441	94	205
Median age (years)	58	58	59
50-60	60%	62%	57%
61-75	40%	38%	43%
Gender, male	59%	56%	48%
CMV seropositive	59%	62%	62%

Characteristics

		URD (8/8)	URD (7/8)	UCB	
	WBC at diagnosis, < 25 x 10 ⁹ /L	74%	77%	63%	
AML racteristics	Time to CR1, < 8 weeks	70%	70%	51%	
il actel istics	Cytogenetic risk				
	Favorable	3%	1%	2%	
	Intermediate	25%	35%	46%	
	Unfavorable	30%	33%	37%	
orf DJ, et al. Blood. 20	13;122(21): Abstract 302.				

Alternative Donor HCT in Older AML (302)

HCT Characteristics

	URD (8/8)	URD (7/8)	UCB
Conditioning regimen			
Myeloablative	50%	46%	21%
Reduced Intensity	50%	54%	79%
GVHD prophylaxis			
Tacro/CSA + MMF	30%	41%	88%
Tacro/CSA + MTX	62%	54%	3%
Tacro/CSA alone	10%	5%	6%
In vivo T-cell depletion	39%	50%	32%
Transplant period			
2005-2007	56%	61%	20%
2008-2010	44%	39%	80%
Median follow-up, months	50	61	37

idorf DJ, et al. Blood. 2013;122(21): Abstract 302.

	F	Results		
	URD (8/8)	URD (7/8)	UCB	P value
Neutrophil recovery, > 500/microL at Day +28	97%	91%	69%	< 0.0001
Platelet recovery, > 20,000/microL at Day +90	91%	89%	69%	< 0.0001
aGVHD II/IV	36%	44%	35%	Not significant
cGVHD at 3 years	53%	59%	28%	0.0001

Alternative Donor HCT in Older AML (302)

- Conclusions
 - Neutrophil and platelet recovery slower with UCB

 - 3-year cGVHD lowest with UCB
 3-year LFS lowest with UCB but similar with 8/8 and 7/8 URD

 - 3-year relapse similar between groups
 3-year TRM lowest with 8/8 URD
 3-year survival was greatest with 8/8 URD
- Implications

 - UCB can provide extended survival in the absence of an 8/8 HLA-matched URD
 Lower frequency of cGVHD with UCB may be of particular value in older patients

orf DJ, et al. Blood. 2013;122(21): Abstract 302.

ARS Question #1

In the study reported by Ruggeri and colleagues at the 2013 ASH meeting, infants with ALL had better outcomes following allo-HCT than those with AML (like what has been observed for older pediatric patients).

- A. True
- B. False

UCB Transplant in Infant Leukemia (160)

- · Infant acute leukemia
 - Occurs rarely and distinctly different from other pediatric acute leukemias
 - Very poor prognosis secondary to chemotherapy resistance and treatment-associated toxicities
 - Role of HCT
 - Allo-HCT indicated in ALL in CR1
 - No consensus for AML in CR1
 - · UCB attractive graft source
 - High stem cell content
 - Readily available

eidler-McKay PA, et al. *Curr Probl Pediatr Adolesc Health Care*. 2008;38:78-94. 2. Hunger SP, et al. *Biol Blood N* splant. 2009;15{1 Suppl):S79-83. 3. Carpenter PA, et al. *Biol Blood Marrow Transplant*. 2012;18(1 Suppl):S33-9.

UCB Transplant in Infant Leukemia (160)

- Study
 - Aim: evaluate outcomes and risk factors of acute leukemias diagnosed within first year of life and treated with UCB transplant (UCBT)
 - Conducted 1995 2012 in EBMT centers
 - Single myeloablative UCBT in 254 patients

 - 95 with AML
 - Median age at diagnosis = 5.7 months (0.03 12 months)
 - Median age at UCBT = 13.8 months (3.6 months 11 years)
 - Median follow-up = 42 months

eri A, et al. Blood. 2013;122(21): Abstract 160.

UCB Transplant in Infant Leukemia (160)

Patient Characteristics

N = 254	
138 (54%)	
81 (32%)	
35 (14%)	
44 (24%)	
138 (76%)	
	138 (54%) 81 (32%) 35 (14%)

- *Of those patients with ALL, 82 had chromosome 11 abnormalities defined as t(4;11) 47 had 11q23 abnormalities not otherwise specified

A, et al. Blood. 2013;122(21): Abstract 160

UCB Transplant in Infant Leukemia (160)

IICRT	Characte	rictice

Characteristic	N = 254
HLA mismatches	
None (6/6)	40 (21%)
One (5/6)	107 (57%)
Two (4/6)	42 (22%)
Median TNC x 10 ⁷ /kg (range)	9.4 (1 – 18)
Conditioning regimen [busulfan (Bu) based]	n = 186 (75%)
Bu/Cy	68 (37%)
Bu/Cy/Melphalan	43 (23%)
Bu/Cy/Flu/Thiotepa	31 (17%)
Other	44 (23%)
Jse of TBI > 6 Gy	31 (12%)
Jse of antithymocyte globulin before Day 0	79%
GVHD prophylaxis	
Cyclosporine + steroids	72%
Cyclosporine + mycophenolate mofetil	11%

UCB Transplant in Infant Leukemia (160)

- Results
 - Neutrophil engraftment = median time of 21 days
 - In a univariate analysis, higher cell dose was associated with better engraftment
 - aGVHD
 - $39 \pm 3\%$ cumulative incidence at Day 100
 - Median time to onset was 18 days
 - 96 patients (38%) experienced Grade II IV aGVHD
 - Grade II = 60% Grade III = 25%

 - Grade IV = 15%

eri A, et al. Blood. 2013;122(21): Abstract 160.

UCB Transplant in Infant Leukemia (160)

- Results
 - Relapse
 - Overall at 4 years was 26 ± 4%
 - 21% for AML vs. 28% for ALL (p = 0.32) · Disease status was important
 - 19 ± 4% for CR1 vs. 35 ± 5% for other (p = 0.001)
 - · Diagnosis before 3 months of age $-36 \pm 6\%$ if < 3 months vs. $22 \pm 3\%$ if > 3 months (p = 0.06)
 - TRM
 - Overall at 4 years was 25 ± 3%
 - $-31 \pm 4\%$ for ALL vs. $15 \pm 4\%$ for AML (p = 0.005)

ri A, et al. Blood. 2013;122(21): Abstract 160.

UCB Transplant in Infant Leukemia (160)

- · Results
 - LFS
 - Overall at 4 years was 49 ± 3%
 - 41 ± 5% for ALL vs. 64 ± 5% for AML (p = 0.002)
 - 45% for ALL + chromosome 11 abnormalities
 - ALL (n = 159)
 - 50 ± 6% in CR1 vs. 30 ± 6% not in CR1 (p = 0.003)
 - AML (n = 95)
 - $-82 \pm 5\%$ in CR1 vs. $40 \pm 8\%$ not in CR1 (p < 0.001)

Risk Factor	Hazard Ratio	95% CI	P-value
Diagnosis of ALL	1.8	1.2-2.7	0.004
Age at diagnosis of < 3 months	1.5	1.1-1.5	0.026
Disease status not in CR1	2.4	1.7-2.5	< 0.001

Ruggeri A, et al. Blood. 2013;122(21): Abstract 160.

UCB Transplant in Infant Leukemia (160)

- Results
 - Overall survival
 - At 4 years = 53 ± 3%
 - 43 ± 4% for ALL vs. 65 ± 5% for AML (p = 0.003)
 - Like LFS, being in CR1 had more favorable outcomes compared to not being CR1 for both ALL and AML
 - Cause of death [115 patients (45%)]
 - 55 relapse
 - 56 TRM
 - 52% infection, 16% GVHD, 7% multi-organ failure
 - 4 unknown

Ruggeri A, et al. Blood. 2013;122(21): Abstract 160.

UCB Transplant in Infant Leukemia (160)

- Conclusions
 - UCBT is a suitable option for infants with acute leukemia in remission
 - TRM higher for infants with ALL compared to AML
 - Intensity of pre-HCT therapies?
 - Patients with AML had a better prognosis than those with ALL
 - · Contrasts what is seen in older pediatric patients

uggeri A, et al. *Blood*. 2013;122(21): Abstract 160

<i>Y</i>	
/	
Conditioning Regimens	
// Eq	
SBM	
77	
Conditioning Regimens	
 Abstract 3280 P – Pharmacokinetics Of a Generic Formulation Of Intravenous Busulfan (BUCELON 60™) In Patients Undergoing Hematopoietic Stem Cell Transplantation 	
Abstract 3281 P – Impact Of Renal Insufficiency and Obesity On Safety and Outcomes Of BEAM Conditioning	
Abstract 2170 P – Use of Biosimilar G-CSF Compared With Lenograstim In Autologous Haematopoietic Stem Cell Transplant and In Sibling Allogeneic Transplant	
Abstract 3275 P – The of Tevagrastim (Biosimilar Filgrastim XMO2) For Hematopoietic Stem Cell Mobilization In HLA Matched Sibling Donors For Allogeneic Stem Cell Transplantation To AML/MDS Patients	
Matched Sibling Donors For Allogeneic Stem Cell Transplantation To AML/MDS Patients	
₹A	
1/4 /	
Graft-versus-Host Disease	
- Crait Vereus Hoot Bioodo	
/// <u>E</u> O	

Graft-versus-Host Disease

- Abstract 923 O Calcineurin Inhibitor-Free GVHD Prophylaxis with Post-Transplant Cyclophosphamide and Brief-Course Sirolimus Results in Low Rates of Non-Relapse Mortality and Chronic GVHD Following Matched Related and Unrelated Donor Peripheral Blood Stem Cell Transplantation (PBSCT)
- Abstract 909 O A Phase II Study Of Proteasome-Inhibition For Initial Therapy Of Chronic Graft-Versus-Host Disease
- Abstract 703 O Efficacy and Safety Of Lower-Dose Glucocorticoids For Initial Treatment Of Acute Graft-Versus-Host Disease: A Randomized Controlled Trial

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Background
 - GVHD preventative strategy required for allo-HCT
 - Most common strategy for GVHD prophylaxis → calcineurin inhibitor (CNI) + methotrexate^{1,2}
 - Better control of aGVHD but no significant impact on cGVHD
 - Numerous challenges with this approach
 Side effects, drug interactions, costs, etc.
 - Post-transplant cyclophosphamide (PT/Cy)³
 - Promotes tolerance in alloreactive host and donor T cells
 - Combination with tacrolimus and mycophenolate mofetil
 - Single agent

1. Storb R, et al. Biol Blood Marrow Transplant. 2010;16(1 Suppl):S18-27. 2. Martin PJ, et al. Biol Blood Marrow Transplant. 2012;18:150-63. 3. Luznik L, et al. Semin Oncol. 39:683-93.

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Sirolimus
 - Novel mechanism of action
 - Potential advantages
 - Promotes generation of T-regulatory cells
 - Antineoplastic activity
 - · Antiviral activity
 - Less nephrotoxicity

Cutler C, et al. Curr Opin Hematol. 2010;17:500-4. 2. Abouelnasr A, et al. Biol Blood Marrow Transplant. 2013;19:12-21

-
_

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Study hypothesis = using PT/Cy with shortcourse sirolimus after PBSCT using matchedrelated donor (MRD)/matched-unrelated donor (MUD) will improve outcomes
 - Reliable engraftment with rapid donor chimerism
 - Limit of a- and cGVHD with minimal NRM
 - Improve graft-versus-leukemia (GVL) effect
 - Decrease in adverse events as seen with conventional GVHD prophylaxis

Sanacore M, et al. Blood. 2013;122(21): Abstract 923

Calcineurin Inhibitor-Free GVHD Prophylaxis (923) • Study — Patients ≤ 75 years old — Available 10/10 HLA-matched related or unrelated donor — High-risk hematologic malignancy Fludarabine 30 mg/m²/day Cyclophosphamide 14.5 mg/kg/day PBSC Infusion Gyclophosphamide 130 mg/m²/day Sanscore M, et al. 8lood. 2013;122(21): Abstract 923

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

Characteristics	N = 26
Age in years, median (range)	61 (25 – 73)
Gender, male	16 (62%)
Transplant type, MRD	17 (65%)
Disease status AML-CR1 AML-CR2 AML-PIF ALL-CR1 MDS MPD NHL/HD-CR2/3 NHL/HD refractory/relapsed CLL refractory/relapsed	4 3 1 1 3 4 3 3 4
HCT-Comorbidity Index 0 1 – 2 3 – 5 6 – 7	7 (27%) 13 (50%) 4 (15%) 2 (8%)

CR – complete remission, MPD – myeloproliferative disorder, PIF – primary induction failure

nacore M, et al. *Blood*. 2013;122(21): Abstract 923

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Results
 - Median length of hospitalization = 10 days (0 30)
 - Median time to neutrophil engraftment = 15 days (13 28)
 - Median time to platelet engraftment = 30 days (15 164)
 - Engraftment rate 100%
 - Median follow-up 12.7 months (3.4 27.5)
 - DFS 79%
 - Relapse 17%
 - NRM 4%
 - aGVHD \rightarrow 42% Grade II IV (15% Grade III IV)
 - cGVHD → 29% (13% severe cGVHD)

re M, et al. Blood. 2013;122(21): Abstract 923

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Results

 - Time to immunosuppression discontinuation
 25 evaluable patients → 68% off therapy
 21 patients evaluable at the time of data analysis
 18 (68%) off therapy
 3 still on therapy (length = 5, 10 and 23 months)

 - 3 still on therapy (length = 5, 10 and 23 months)
 Infections
 21% CMV reactivation in 19 patients at risk
 No CMV disease
 No cases of invasive molds in first 100 days
 1 patient with rhizopus post-HCT following relapse
 No Epstein-Barr Virus (EBV)-associated post transplant lymphoproliferative disorder (PTLD)
 No NRM secondary to infection
 BK virus-associated cystitis in 31% (8/26) of patients (severe in 4 patients)

e M, et al. Blood. 2013;122(21): Abstract 923

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Results
 - Toxicity
 - 8 patients switched to tacrolimus (median time Day +51)
 - 2 due to sinusoidal obstructive syndrome
 - » Resolved spontaneously after therapy change
 - 3 due to GVHD
 - 2 as a result of cytopenias
 - 2 patients (8%) with renal insufficiency
 - Mucositis
 - 8 patients with Grade 2 and 2 patients with Grade 3
 - No cases of thrombotic microangiopathy/hemolytic-uremic syndrome

e M, et al. *Blood*. 2013;122(21): Abstract 923

-	

Calcineurin Inhibitor-Free GVHD Prophylaxis (923)

- Conclusions
 - Achievement of
 - Consistent donor engraftment (but slower platelet recovery)
 - Low rates of infectious complications
 - · Low incidence of cGVHD
 - Rapid withdrawal of immunosuppression
 - Low rate of relapse and promising DFS
 - PT/Cy + sirolimus prophylactic regimen is a safe and effective alternative to standard CNI-based immunosuppression

Sanacore M, et al. Blood. 2013;122(21): Abstract 923

Bortezomib in cGVHD (909)

- Background
 - cGVHD

ra AF, et al. Blood. 2013;122(21): Abstract 909.

- Bortezomib clinical data
 - Improved cGVHD after treatment of post-allo-HCT relapse of multiple myeloma¹⁻³
 - Effective in steroid-refractory cGVHD⁴

1. Mateos-Mazon J, et al. Hoematologica. 2007;92:1295-6. 2. El-Cheikh J, et al. Hoematologica. 2008;93:455-8. 3. Todisco E, et al. Leuk Lymph. 2007;48:1015-8. 4. Miller AM, et al. Biol Blood Marrow Transplant. 2011;17(Suppl 1):Abstract 530.

Bortezomib in cGVHD (909) CGVHD Onset Prednisone 0.5-1mg/kg Day 1 8 15 22 35 D≥ 100 Day 1 8 15 22 35 Prednisone 0.5-1mg/kg D Day 1 8 15 22 35 Prednisone: 0.5 - 1mg/kg PO daily Suggested taper: 10 - 25% every 1 - 2 weeks post-C1 22 patients enrolled (March 2009 – November 2011)

Bortezomib in cGVHD (909)

Baseline Characteristics

51 (25 – 69) 10 (46%) 9 (41%)
, ,
0 (419/)
0 (410/)
9 (41%)
4 (18%)
3 (14%)
6 (27%)
13 (59%)
5 (23%)
4 (18%)

Bortezomib in cGVHD (909)

Baseline Characteristics

GVHD Characteristics	N = 22
Prior aGVHD	
Grade 0 – I	19 (86%)
Grade II – IV	3 (14%)
Median platelet count, x 10 ⁹ /L (range)	197 (90 – 378)
Median time to cGVHD onset, days (range)	215 (133 – 666)
Median time to cGVHD therapy onset, days (range)	257 (186 – 2070)

Bortezomib in cGVHD (909)

- Results

 - Results

 Feasibility

 18 of 22 (82%) of patients completed all three cycles

 2 patients withdrawn from study within 2 weeks of enrollment due to progressive cGVHD

 2 patients on study were non-evaluable

 1 with relapsing AML during cycle #2

 1 with severe primary coccidiomycosis during cycle #1
 - Toxicity Oxicity

 1 patient with Grade 3 peripheral neuropathy (possibly related to bortezomib)

 No reports of

 ≥ Grade 3 hematologic toxicities

 Any other ≥ Grade 3 toxicities related to bortezomib

 Increase in CMV reactivation

era AF, et al. Blood. 2013;122(21): Abstract 909.

Bortezomib in cGVHD (909)

- · Conclusions
 - Bortezomib + prednisone was feasible and welltolerated as 1st line cGVHD therapy
 - High overall response rate after 15 weeks of therapy, most notably in skin and liver
 - 1 year after end of therapy
 - 25% of patients off prednisone
 - 10% on low-dose of prednisone (≤ 0.25 mg/kg)
 - 50% required additional therapy for cGVHD
 - Need to conduct a randomized controlled trial to determine whether proteasome-inhibition adds benefit

Herrera AF, et al. Blood. 2013;122(21): Abstract 909.

Graft-versus-Host Disease

- Abstract 3297 P Higher Mycophenolic Acid (MPA) Trough Levels Result In Lower Day 100 Severe Acute GVHD Without Increased Toxicity In Double-Unit Cord Blood Transplantation (CBT) Recipients
- Abstract 4571 P A Pilot Study Of Continuous Infusion Mycophenolate Mofetil For Graft Versus Host Disease Prophylaxis
- Abstract 2067 P Tocilizumab In The Treatment Of Steroid Refractory Graft Versus Host Disease: A Single Institutional Experience

Supportive Care	
	- 4/
	CIBMTR

Supportive Care

- Abstract 700 O Results Of The Large Prospective Study On The Use Of Defibrotide (DF) In The Treatment Of Hepatic Veno-Occlusive Disease (VOD) In Hematopoietic Stem Cell Transplant (HSCT). Early Intervention Improves Outcome -Updated Results Of a Treatment IND (T-IND) Expanded Access Protocol
- Abstract 4591 P Impact Of Prophylaxis With Defibrotide On The Occurrence Of Acute GvHD In Allogeneic HSCT

ARS Question #2

On the T-IND-2006-05 study, when compared to children, adult patients treated with defibrotide for severe veno-occlusive disease had which of the following outcomes?

- A. Inferior CR and survival rates
- B. Superior CR and survival rates
- C. Higher incidence and grades of aGVHD
- D. Higher rates of graft failure and disease relapse

Defibrotide on T-IND (700)

- T-IND-2006-05¹
 - Given the life-threatening nature of veno-occlusive disease (VOD)/multi-organ failure (MOF) with > 80% mortality at D+100,² study initiated in 2007
 - This study is the largest prospective evaluation of defibrotide for the treatment of severe VOD (sVOD)/ MOF in HCT patients
 - Updated analysis is based on 470 patients enrolled between December 2007 and December 2012 at 75 centers in the USA
 - The efficacy and safety of defibrotide in patients who had undergone HCT (N = 425; 90%) was presented

1. Richardson PG, et al. Blood. 2013;122(21): Abstract 700. 2. Coppell JA, et al. Biol Blood Marrow Transplant. 2010;16:157–68.

Defibrotide on T-IND (700)

35% of HCT patients had CR at Day +100 - Survival at Day +100 was 55%

	CR Day +100	Survival Day +100*
HCT patients (n = 425)	35%	55%
HCT patients with sVOD (n = 284)	29%	48%
HCT patients with non-severe VOD (n = 141)	47%	69%
Non-HCT patients (n = 45)	40%	62%

*Kaplan-Meier estimates for time-to-event analysis by Day 100

chardson PG, et al. *Blood*. 2013;122(21): Abstract 700.

Defibrotide on T-IND (700)

• Children (≤16 years) had higher CR rates and survival compared to adults

	Pediatric patients (n=232)	Adult patients (n=192)	p value
CR (Day +100)	41%	27%	0.0038*
Survival (Day +100)†	60%	49%	0.0203 [‡]

*Chi-square test between subgroups

†Kaplan-Meier estimates for time-to-event analysis by Day 100

†I on rank test between subgroups

chardson PG, et al. *Blood*. 2013;122(21): Abstract 700.

~	1
,	
	_

Defibrotide on T-IND (700)

 Delay in the initiation of defibrotide treatment of > 2 days from sVOD/VOD diagnosis results in significantly lower CR rate and higher mortality at Day +100 post-HCT

Time from VOD diagnosis to defibrotide administration (n=406)	≤2 Days (n=272)	>2 Days (n=134)	p value
CR (Day +100)	39%	25%	0.0052*
Survival (Day +100)†	61%	38%	< 0.0001‡

*Chi-square test between subgroups
*Kaplan-Meier estimates for time-to-event analysis by Day 100

Richardson PG, et al. Blood. 2013;122(21): Abstract 700.

Defibrotide on T-IND (700)

Safety: Transplanted analysis population

	Defibrotide (N=425)
Total patients with at least one adverse event (AE)*	22%
Total patients with at least one serious AE	13%
Hypotension	4%
Hemorrhage Pulmonary hemorrhage Gastrointestinal hemorrhage Epistaxis Hematuria	17% 6% 6% 3% 2%
Related events leading to discontinuation	16%
Incidence of all grade GVHD (in patients who underwent an allo-HCT)	11%

*A possible relationship with defribrotide could not be ruled out chardson PG, et al. *Blood*. 2013;122(21): Abstract 700.

Defibrotide on T-IND (700)

- Conclusions
 - Ongoing treatment IND provided broad access to defibrotide
 - Use of defibrotide for treatment of sVOD in HCT patients improves outcomes
 - Children had higher CR rates compared to adults
 - Early initiation of defibrotide is important once sVOD is suspected
 - Defibrotide is well tolerated with markedly lower rates of GVHD than expected

hardson PG, et al. *Blood*. 2013;122(21): Abstract 700.

Defibrotide Effects on aGVHD (4591)

- Background
 - In vitro defibrotide has been shown to bind to various sites on the vascular endothelium, modulating expression status and activity of endothelial cells^{1,2}
 - Vascular endothelium is one of the main target tissues identified in the pathogenesis of aGVHD³
 - Defibrotide has a potential role in aGVHD
- · Analysis4
 - Effects of defibrotide on incidence and severity of aGVHD in pediatric patients receiving defibrotide prophylaxis for VOD post-HCT

Richardson PG, et al. Expert Opin Drug Sof. 2013;12:123-36.
 Defitelio* Summary of Product Characteristics. Gentium SpA, 2013.
 Kummer M, et al. J Immunol. 2005;174:1947-53.
 Corbaciogku S, et al. Blood. 2013;122(21): Abstract 4591.

Defibrotide Effects on aGVHD (4591)

- Findings
 - Prophylaxis with defibrotide was found to significantly reduce the occurrence and severity of aGVHD
 - Use of corticosteroids was significantly lower in those patients receiving defibrotide
 - Defibrotide use did not seem to interfere with leukemia relapse rates at Day 100 or Day 180
- · Further studies are clinically warranted

Corbaciogku S, et al. Blood. 2013;122(21): Abstract 4591

Supportive Care

- Abstract 2057 P Inhaled Cyclosporine For The Treatment Of Bronchiolitis Obliterans Following Hematopoietic Stem Cell Transplantation (HSCT) Or Lung Transplantation
- Abstract 2986 P Evaluating Risk Factors and Outcomes For Clostridium Difficile Infection (CDI) In Stem Cell Transplant (SCT) Recipients
- Abstract 4641 P Incidence and Risk Factors For Pneumocystis Jirovecii pneumonia (PCP) Following Haematopoetic Stem Cell Transplant (HSCT)
- Abstract 4631 P Palifermin For Prevention Of Oral Mucositis Has No Negative Effect On Long-Term Outcome In Patients With Hematological Malignancies Undergoing HSCT - Long-Term Follow-Up

_	
-	
_	

7	Relapse		
		CIBMTR	_

Relapse

 Abstract 2072 P – Survival Of AML Patients Relapsing After Allogeneic Stem Cell Transplantation: A Center For International Blood and Marrow Transplant Research Study

AML Relapse After Allo-HCT (2072)

- Survival after AML relapse post-allo-HCT is poor
- · Study objectives
 - Measure OS of AML patients relapsing post-allo-HCT
 - Identify prognostic factors for survival following post-HCT relapse
 - Identify clinical and disease characteristics of longterm (≥ 1 year) post-relapse survivors after allo-HCT
- Several factors associated with poor survival

janyan N, et al. *Blood*. 2013;122(21): Abstract 2072.

AML Relapse After Allo-HCT (2072)

- Survival is better with:
 Longer time from HCT to relapse
 Age < 40 years
 Favorable cytogenetics
 Use of RIC

 - Related/Unrelated-Matched donor
 - No active GVHD at the time of relapse
- Survival ≥ 1 year post relapse (23%) associated with relapse > 6 months post-HCT and receiving 2nd HCT or donor lymphocyte infusion (DLI)
- Relapse/Persisting AML is the primary cause of death (71%)

Bejanyan N, et al. Blood. 2013;122(21): Abstract 2072.

Survivorship

Survivorship

- Abstract 916 O Voriconazole Exposure and The Risk Of Cutaneous Squamous Cell Carcinoma In Allogeneic Hematopoietic Stem Cell Transplant Patients
- Abstract 553 O Long-Term Health-Related Outcomes In Survivors Of Childhood Hematopoietic Cell Transplantation (HCT): A Report From The Bone Marrow Transplant Survivor Study (BMTSS)

Voriconazole and Cutaneous Squamous Cell Carcinoma In HCT (916)

- Background
 - Recommendations for prophylaxis with mold-active agents1
 - Role of voriconazole
 - Voriconazole and squamous cell carcinoma (SCC)²⁻⁵
 - Identified as an independent risk factor in solid organ transplant patients
- Study⁶
 - Examine the risk of cutaneous SCC in HCT patients receiving voriconazole
 - Retrospective review of consecutive adult patients receiving a HCT at the Mayo Clinic between 2007 and 2012.

Freifield AG, et al. Clin Infect Dis. 2011;52:e56-e93. 2. Vadnerkar A, et al. J Heart Lung Transplont. 2010;29:1240-4. 3. Zwald FO, et al. Demoniol Surg. 2012;83:1369-74. 4. Singer In Jet al. J Heart Lung Transplont. 2012;31:694-9. 5. Feist A, et al. J Heart Lung Transplont. 2012;1177-81. 6. Health Sci. et al. Belocal VISIL-12[12]: Palvarea [1].

Voriconazole and Cutaneous Squamous Cell Carcinoma In HCT (916)

- Methods
 - Identification of cutaneous SCC by biopsy reports
 - Voriconazole exposure at anytime during disease treatment
 - Cumulative exposure was total number of days following HCT
 - Number of covariates adjusted for simultaneously was limited due to small number of patients developing cutaneous SCC
 - Age at HCT Gender Gender Age at HCT IBI for conditionir
 Skin cancer pre-HCT (yes/no) cGVHD (yes/no)

TBI for conditioning

ımi SK, et al. *Blood*. 2013;122(21): Abstract 916.

Voriconazole and Cutaneous Squamous Cell Carcinoma In HCT (916)

Baseline Patient Characteristics	N = 381
Age at HCT, years (range)	53 (19-71)
Gender, Male	222 (58.3%)
Race, Caucasian	358 (94.0%)
Primary malignancy	
AML	137 (36.0%)
MDS/MPD	71 (18.6%)
ALL	50 (13.1%)
CLL	44 (11.5%)
Plasma Cell Disorders	30 (7.9%)
CML	23 (6.0%)
Lymphoma	17 (4.5%)
Non-Malignant Disorders	9 (2.4%)
Skin cancer pre-transplant	
Melanoma	8 (2.1%)
Non-Melanoma	25 (6.6%)
No previous history documented	348 (91.3%)

	_	_	

Voriconazole and Cutaneous Squamous Cell Carcinoma In HCT (916)

Baseline HCT Characteristics	N = 381
Graft type	
Peripheral Blood	331 (86.9%)
Bone Marrow	40 (10.5%)
Umbilical Cord Blood	10 (2.6%)
Conditioning Regimen	
Melphalan/Fludarabine	130 (34.1%)
Cyclophosphamide/TBI	106 (27.8%)
Fludarabine/TBI	43 (11.3%)
Busulfan/Cyclophosphamide	38 (10.0%)
Melphalan/TBI	24 (6.3%)
Busulfan/Fludarabine	11 (2.9%)
Cyclophosphamide/Fludarabine/TBI	8 (2.1%)
Other	21 (5.5%)
Total body irradiation	
Myeloablative	137 (36.0%)
Reduced Intensity/Nonmyeloablative	55 (14.0%)
No radiation received	189 (49.6%)
ni SK, et al. <i>Blood</i> . 2013;122(21): Abstract 916.	

Multivariable (exposure/cum						
	History of V	oriconazole Ex	posure	Cumulative	Days of Vorice	onazole Use
Variable	Hazard Ratio	95% Confidence Interval	P Value	Hazard Ratio	95% Confidence Interval	P Value
Voriconazole	2.436	0.557 - 10.652	0.2369	1.859	1.347- 2.567	<0.001
Male Gender	3.399	1.269 - 9.106	0.0149	3.598	1.328 - 9.746	0.0118
Transplant Age	1.049	1.002 - 1.098	0.0403	1.070	1.019 - 1.123	0.0070
TBI-Conditioning (yes/no)	1.654	0.728 - 3.754	0.2291	1.861	0.827 - 4.189	0.1333
Skin Cancer Pre-HCT	2.900	1.152 - 7.302	0.0238	2.715	1.084 - 6.800	0.0330
Chronic GVHD	2.989	0.858 - 10.410	0.0855	2.047	0.549 - 7.631	0.2862

Hashmi SK, et al. Blood. 2013;122(21): Abstract 916.

Voriconazole and Cutaneous Squamous Cell Carcinoma In HCT (916)

- · Limitations
- Conclusions
 - First study in HCT to identify relationship between cumulative days of voriconazole exposure and development of cutaneous SCC
 - No causality established
 - Risks of long-term use of voriconazole?
 - Patient counseling necessary
 - Changes in therapy may be necessary

ni SK, et al. Blood. 2013;122(21): Abstract 916.

Bone Marrow Transplant Survivor Study (553)

- · Retrospective cohort study design
- Eligibility
 - HCT between 1974 and 1988 at City of Hope or University of Minnesota
 - Age at HCT ≤ 21 years
 - Survival of ≥ 2 years post-HCT
- · Instruments
 - BMT Survivor Study (BMTSS) Questionnaire
 - · Medical outcomes

Functional health status

· Healthcare utilization

Sociodemographic information

an S, et al. Blood. 2013;122(21): Abstract 553.

Bone Marrow Transplant Survivor Study (553)

- · Summary Chronic Health Conditions
 - Cumulative incidence
 - · Any chronic health condition was 56% at 15 years post-HCT
 - · Severe/life threatening condition was 25% at 15 years
 - Risk factors for severe/life threatening condition

 - Female gender (1.6-fold higher risk)
 Conditioning with TBI (2.6-fold higher risk)
 - Incidence and severity of chronic health conditions did not vary by stem cell source
 - Among allo-HCT recipients
 - Patients with cGVHD at highest risk for severe-life threatening health conditions

n S, et al. *Blood*. 2013;122(21): Abstract 553.

Bone Marrow Transplant Survivor Study (553)

- Summary Late Mortality
 - OS (having survived the first 2 years post-HCT) was 80% at 10 years
 - 68% for auto-HCT vs. 83% for allo-HCT
 - Compared to age- and sex-matched general population, the cohort was at a:
 - 22-fold increased risk of premature death
 - High risk: female, TBI conditioning, auto-HCT
 - 8-fold risk of NRM

Armenian S, et al. Blood. 2013;122(21): Abstract 553.

Bone Marrow Transplant Survivor Study (553)

- Summary Health Care Utilization
- 92% of survivors carried health insurance
 - 100% of survivors reported medical contact
 - 84% reported having had a general physical exam in the past 2 years
- 68% reported a cancer center visit
- · Interpretation
 - There is a need for lifelong contact with healthcare system
 - High proportion of survivors seen outside transplant center
 - Need to standardize long-term follow-up recommendations

Armenian S, et al. Blood. 2013;122(21): Abstract 553. 2. Majhail NS, et al. Biol Blood Marrow Transplant. 2012;18:348-71.

Patient Populations/Referrals

Patient Populations/Patient Referrals

 Abstract 304 O – Clofarabine Salvage Therapy Prior To Allogeneic Hematopoietic Stem Cell Transplantation In Patients With Relapsed Or Refractory AML – Results Of The Bridge Trial

The BRIDGE Trial (304)

- Background¹⁻⁴
 - Poor outcomes in relapsed/refractory AML
 - Clofarabine + cytarabine
- BRIDGE trial⁵
 - Intent-to-transplant study (Phase II)

 - Primary endpoint: CR after consolidation
 Assessed on Day 42 following last dose of clofarabine
 - Major eligibility criteria
 - Relapsed/refractory AML in patients > 40 years old Excluded: ≥ 2nd relapse, refractory disease after > 1 cycle of high-dose cytarabine
 - No prior HCT

1. Kubal T, et al. Curr Opin Hematol. 2013;20:100-6. 2, Ghanem H, et al. Leuk Lymph. 2013;54:688-98. 3. Mathisen MS, et al. Clin Lymphoma Myeloma Leuk. 2013;13:139-43. 4. Martiner-Cuadron D, et al. Ann Hematol. 2014;93:43-6. 5. Middeke JM, et al. Blood. 2013;122[21]: Abstract 304.

TI DDIDGET : L(CO.4)			
The BRIDGE Trial (304)			
CLARA-1 (N = 84) Clofarabine 30 mg/m² D 1-5 (amendment 1) Cytarabine 1000 mg/m² D 1-5 7 early death 16 no response 4 other			
CLARA-2 (n = 6) 1 progressive disease	Allo-HCT (n = 51) Melphalan 140 mg/m² Day -2 Clofarabine 30 mg/m² Day -6 to -3 GVHD prophylaxis: CSA/MMF, ATG in MUD		
Allo-HCT (n = 5) 5 CR	46 CR 67% HCT rate 5 early death 61% CR rate		
Middeke JM, et al. <i>Blood</i> . 2013;122(21): Abstract 304.	SAS		

Patient Characteristics ¹	N = 84	
Age (median) in years	61 (40 – 75)	
Performance status of ECOG ≥ 2	23%	
HCT-CI cycles, median (range)	1 (0 - 6)	
Disease status		
Refractory	48%	
Early relapse (< 6 months)	24%	
Late relapse (> 6 months)	26%	
ELN genetic risk group ²		
Favorable	17%	
Intermediate I	35%	
Intermediate II	18%	
Adverse	20%	

The BRIDGE Trial (304)

- Response on Day 15
 - 47% good (< 10% blasts)
 - 35% moderate (reduction in blast count and/or marrow cellularity + clearance of peripheral blood)
 - 19% no response
- · Overall survival by intention to treat
 - 51% at 12 months
- DFS
 - 57% at 12 months

iddeke JM, et al. *Blood*. 2013;122(21): Abstract 304.

The BRIDGE Trial (304)

- Conclusions
 - Activity and toxicity of CLARA-1 reasonable
 - Salvage chemotherapy and rapid transplantation in aplasia is feasible
 - Promising DFS in transplanted patients
 - Difficult to assess for the affects of clofarabine, highdose melphalan and GVL effect

Middeke JM, et al. *Blood*. 2013;122(21): Abstract 304

Scientific Sessions

ARS Question #3

What impact does the ratio of B cell-activating factor (BAFF) to B cells have on GVHD after allo-HCT?

- A. Increased ratio associated with aGVHD
- B. Decreased ratio associated with aGVHD
- C. Increased ratio associated with cGVHD
- D. Decreased ratio associated with cGVHD

Platelets and Cancer

- · Platelets and the role of cancer metastasis
 - Adhesion
 - Coagulation
 - Protection against natural killer (NK) cells or turbulence
- Platelet inhibitors have been shown to substantially decrease risk of tumor invasion and mortality in cancer patients
- Platelets are large reservoirs of angiogenic and oncogenic growth factors
 - Modulation of cytokines to change effects

Labelle M, et al. Cancer Cell. 2011;20:576-90.
 Gay LJ, et al. Nat Cancer Rev. 2011;11:123-34.
 Labelle M, et al. Cancer Discov. 2012;2:1091-9.
 Stone RL, et al. N Engl J Med. 2012; 366:610-8.
 Cho MS, et al. Blood. 2012;120:4869-72.

Roles of B Cells in Transplant

- After allo-HCT role of donor B cells in GVHD
 - · Potential role in aGVHD
 - Clear evidence for contribution to both GVL and cGVHD
 Several studies have demonstrated the benefits of rituximab in the management and prophylaxis of steroid-refractory cGVHD^{1,2}
- B cell-activating factor (BAFF)3,4
 - · Promotes B cell differentiation
 - Increased BAFF:B cell ratio in patients with cGVHD
- B cell reconstitution in HCT5
 - Inadequate recovery → development of cGVHD
 - Rapid recovery → low incidence of cGVHD
 - Response to rituximab → recovery of normal B cell homeostasis

Arai S, et al. Blood. 2012;119:6145-54.
 Cutler C, et al. Blood. 2013;122:1510-7.
 Sarantopoulos S, et al. Blood. 2012;120:2529-36.
 Kurmina Z, et al. et al. Blood. 2012;12(2):11: abstract 46.

Education Sessions	
	CIBMTR

ARS Question #4

The potential for immunotherapy utilizing chimeric antigen receptors (CAR) in HCT candidates includes which of the following?

- A. Re-induce remission prior to HCT
- B. Produce minimal residual disease (MRD) negative status prior to allo-HCT
- C. Serve as a bridge to HCT
- D. All of the above

Education Sessions

- Genomics in Hematology 101 for the Practicing Clinician
- Changing Paradigms in Acute Lymphoblastic Leukemia: From the Genome to the Patient Clinical Dilemmas in Acute Myeloid Leukemia
- Allogeneic Transplant for High Risk Myelodysplastic Syndromes and Acute Myeloid Leukemia: Are We Improving Outcomes?

- Pediatric Hematology: Insights Applicable to All!
 HIV in Hematology: What's New?
 Infectious Disease Complications Encountered by the
 Practicing Hematologist
- A Fresh Look at Drug Approval: Moving Away From Tradition

Featured Topic – Chimeric Antigen Receptors (CAR): Driving Immunotherapy!

- · Efficacy
 - Leukemia

Lymphoma

Multiple myeloma

- Solid tumors
- · Outstanding issues
 - Persistence (correlates with outcome)
 - Homing (sanctuary sites)
 - On target toxicities
 - B cell aplasia, cytokine release syndrome (CRS)
 - Other toxicities
 - Macrophage activation syndrome (MAS)/hemophagocytic lymphohistiocytosis (HLH), neurotoxicity
 - Which cells should be CAR modified?

Grupp SA, et al. New Engl J Med. 2013;368:1509-18.
 Riddell SR, et al. Biol Blood Morrow Transplant. 2013;19(1 Suppl):52-5.
 Sadelsin M, et al. Cancer Discov. 2013;3:388-98.
 Barrett DM, et al. Current Opin Pediatr. 2014;26:43-9.
 Barrett DM, et al. Survey Pediatr. 2014;26:43-9.

Featured Topic – Chimeric Antigen Receptors (CAR): Driving Immunotherapy!

- Potential for immunotherapy
 - Consolidate patients with minimal residual disease (MRD)
 - Re-induce remission
 - Produce MRD-negative status prior to allo-HCT
 - Serve as a bridge to HCT
 - High risk pediatric ALL

Grupp SA, et al. New Engl J Med. 2013;368:1509-18.
 Riddell SR, et al. Biol Blood Morrow Transplant. 2013;19(1 Suppl):52-5.
 Sadelain M, et al. Cancer Discov. 2013;3:389-98.
 Barnett DM, et al. Current Opin Pediatr. 2014;26:43-9.
 Barrett DM, et al. Current Opin Pediatr. 2014;26:43-9.
 Barrett DM, et al. Current Opin Pediatr. 2014;26:43-9.

Acknowledgements

- · Shahrukh Hashmi, MD, MPH
- · Alex F. Herrera, MD
- · Yvette L. Kasamon, MD
- Johannes Schetelig, MD, MSc
- · Daniel Weisdorf, MD
- · Tracey Walsh-Chocolaad, PharmD, BCOP

_	

	Questions	
Susan	nah.Koontz@koontzoncology.com	
	LWBS	