Emerging Drugs for HCT Conditioning

Kaci Wilhelm, PharmD, BCOP
The University of Texas MD Anderson Cancer Center
Houston, TX

Disclosure

· I have no actual or potential conflicts of interest

Objectives

- Identify emerging agents for stem cell transplant conditioning regimens
- Describe the mechanism of action and impact of these emerging agents on the goals of stem cell transplant conditioning regimens
- Compare common adverse effects of these emerging agents with those of standard therapies
- List dose-limiting toxicities of these emerging agents

Goals of Conditioning Regimens Eradicate malignancy • Active against malignancy • Steep dose response relationship • Synergy with other agents Provide immune suppression (Allogeneic HCT) • Prevent rejection • Toxic to host T cells Minimize non-hematologic toxicity • Reversible toxicity • Non-overlapping serious toxicities

Clofarabine

- · 2nd generation adenosine analog
 - Substitution of fluorine at C2' position of sugar ring
 - Substitution of halogen at 2 position of purine ring
 - More potent than fludarabine or cladribine
- Toxic to both dividing and quiescent lymphocytes
- Food and Drug Administration (FDA) approved
 - Relapsed or refractory acute lymphocytic leukemia (ALL)
 - 52 mg/m² daily for 5 days

Zhenchuk A, et al. Biochemical Pharmacology 2009; 78: 1351-59. Jeha S, et al. J Clin Oncol 2006; 24: 1917-23. Ewald B, et al. Oncogene 2008; 27: 6522-37.

Mechanism of Action

- · Transportation and metabolism
 - Enters cells by passive and facilitated transport
 - Phosphorylated intracellularly to clofarabine monophosphate by deoxycytidine kinase (dCK)
 - Phosphorylated to the active triphosphate form by phosphokinases
 - Incorporated into deoxynucleic acid (DNA)
- · Mechanism of anti-cancer activity
 - Inhibition of DNA synthesis and repair
 - Inhibition of ribonucleotide reductase (RR)
 - Direct induction of apoptosis

Zhenchuk A, et al. Biochemical Pharmacology 2009; 78: 1351-59. Ewald B, et al. Oncogene 2008; 27: 6522-37.

Advantages of Clo

- · Improved stability
- · Increased intracellular retention
 - Higher affinity for active transporters
 - Higher affinity for dCK (activation)
- · Higher affinity for RR and DNA polymerase
- · Direct induction of apoptosis
- · Less neurotoxicity than fludarabine (Flu)

Zhenchuk A, et al. Biochemical Pharmacology 2009; 78: 1351-55 Kantarjian H, et al. Leuk Lymphoma 2007; 48(10): 1922-30. Ewald B, et al. Oncogene 2008; 27: 6522-37.

Toxicity

- · Dose limiting toxicities (DLT)
 - Hand-foot syndrome
 - Liver function test (LFT) abnormalities (≥ grade 3)
 - Aspartate aminotransferate (AST) elevation: 38%
 - Alanine aminotransferase (ALT) elevation: 43%
 - Hyperbilirubinemia: 16%
 - Peak at day 7 and reverse within 16 days
- Most common ≥ grade 3: febrile neutropenia, anorexia, hypotension, nausea
- Rare capillary leak syndrome

Jeha S, et al. J Clin Oncol 2006; 24: 1917-23.

Synergistic Activity

- Synergy with alkylating agents
 Nucleoside analogs inhibit DNA repair enzymes
- Clo 50 times more potent than Flu in vitro
- Clo synergizes with Busulfan (Bu) to a greater extent than Flu *in vitro*
- Combination of Flu + Clo had even higher synergistic cytotoxicity with Bu than either alone in vitro

Andersson B, et al. Biol Blood Marrow Transplant 2011; 17:893-900.

ARS Question #1

- Unlike Fludarabine, the dose limiting toxicity of clofarabine in HCT conditioning is:
- a. Neurologic toxicity
- b. Transaminitis
- c. Mucositis
- d. Veno-occlusive disease

Bu and Clo ± Flu

- · Prospective, single center trial
 - Acute myeloid leukemia (AML) or chronic myeloid leukemia
 - Matched unrelated donor (MUD) or matched related donor (MRD)
- 4 treatment arms
 - Bu 32 mg/m² IV test dose
 - MUD recipients: antithymocyte globulin (ATG) 4 mg/kg/course
 - GVHD prophylaxis: mini-methotrexate (MTX) and tacrolimus

Arm	Flu x 4	Clo x 4	Bu (AUC/day) x 4
- 1	30 mg/m ² 10 mg/m ²		6000
- 11	20 mg/m ²	20 mg/m ²	6000
III	10 mg/m ²	30 mg/m ²	6000
IV		40 mg/m ²	6000

AUC: area under the curve on B, et al. Biol Blood Marrow Transplant 2011; 17:893-900.

Outcomes

- · Engraftment occurred in all patients
 - Neutrophil (median): 12 days (range: 10-22)

 - Platelet (median): 15 days (range: 8-53)
 Chimerism (median) was 100% at d30 and d100
- · Acute graft versus host disease (GVHD)
 - Grade II-IV 31%
 - Grade III-IV 8%
- · Median overall survival (OS) was 23 months
- 2yr OS and progression free survival (PFS) 48% and
- · Adaptive randomization favored Arm III

Toxicity

- · Regimen related toxicity
 - Grade II-III mucositis most common (80%)
 - Reversible grade II-III transaminitis (10%)
 - One case of reversible veno-occlusive disease (VOD)
- Treatment related mortality (TRM) 4% at d100 and 15% at 1 yr
 - Infection: 4
 - GVHD: 3

Conclusion

- Clo was sufficiently immunosuppressive to promote engraftment
- Active regimen in high risk patients
- · Similar toxicity to previous Bu Flu regimen
 - Rates of grade II-III mucositis
 - TRM at 1 yr
 - VOD and transaminitis
- · Phase III trial ongoing

Andersson B, et al. Biol Blood Marrow Transplant 2011; 17:893-900. De Lima, et al. Blood 2004; 857-64.

Phase II: Bu and Clo

- · Phase II, single arm
 - Adult patients with ALL
 - MRD or MUD
- · Conditioning regimen
 - Clo 40 mg/m² daily x 4 days
 - Bu AUC 5500 μMol/min/day x 4 days (AUC 4000 μMol/min/day for age ≥ 60)
 - ATG 4 mg/kg/course for MUD
- GVHD prophylaxis: tacrolimus and mini-MTX
- · Primary outcomes: OS and safety

Kebriaei P, et al. Biol Blood Marrow Transplant 2012; 18: 1819-20

Outcomes

- · All patients engrafted
 - 100% donor chimerism in 49% (d30) and 81% (d100)
 - Median time to neutrophil recovery: 11 days
 - Median time to platelet recovery: 14 days
- Acute GVHD: 38% grade II-IV, 12% grade III-IV

	1 year	2 years
OS	67%	50%
Relapse, CR1	16%	37%
Relapse, advanced	37%	46%
Disease free survival (DFS)	54%	35%
Non-relapse mortality (NRM)	32%	43%

Kebriaei P, et al. Biol Blood Marrow Transplant 2012; 18: 1819-26.

·		
,		
,	 	
,		

Safety

Toxicity	Grade I	Grade II	Grade III	Grade IV
LFT elevations Bilirubin*	2(4)	12 (24)	2 (4)	0
ALT	15 (29)	7 (14)	13 (25)	0
Alk phos	9 (18)	1 (2)	0	0
GI tract Diarrhea	18 (35)	7 (14)	3 (6)	0
Nausea Mucositis	19 (37) 0	30 (59) 35 (69)	1 (2) 9 (18)	0 0
Skin rash	9 (18)	4 (8)	1 (2)	1 (2)
Neurologic	3 (6)	3 (6)	0	0
Hypertension	2 (4)	1 (2)	0	0

ALT – alanie aminotransferase, Alk phos = alkaline phosphatase, GI = Gastrointestina

Vahrisai P. et al. Biol Blood Marrow Transplant 2012: 19: 1919-26

Conclusion

- · Effective regimen
 - Acceptable engraftment and donor chimerism
 - OS rates in CR1 compare favorably with historical standards
 - Relapse is still main cause of failure
- Comparable safety profile to Bu Flu
 - 6% 100 day mortality
 - Common adverse events (AEs) included reversible transaminitis, nausea, diarrhea and mucositis

Kebriaei P, et al. Biol Blood Marrow Transplant 2012; 18: 1819-26. De Lima, et al. Blood 2004; 857-64.

Phase I-II: Clo Mel Alemtuzumab

- Single center, prospective trial
 - Patients with advanced hematologic malignancies not suitable for myeloablative conditioning
 - MRD or MUD
- · GVHD prophylaxis: tacrolimus

	-7	-6	-5	-4	-3	-2
Alemtuzumab	х —				\rightarrow	
Clo	х —				\rightarrow	
Mel						Х

van Besien K, et al. Biol Blood Marrow Transplant 2012; 18: 913-21.

- · Engraftment: 100%
 - Neutrophil (median): 10 days
 - Platelets (median): 18 days
 - Full donor chimerism in 98% at d30 (84% full donor T
 - cell)
 - Full donor chimerism declined to 50% by d180
- · Acute GVHD: grade II-IV 22%, grade III-IV 5%
- Phase I Maximum Tolerated Dose (MTD):
 - Clo 40 mg/m² x 5 and Mel 140 mg/m² x 1 with alemtuzumab 20 mg daily x 5 days
 - No DLTs

Phase II Toxicity

	Grade I-II	Grade III-IV	Grade V
Hepatic	58%	39%	
Renal	30%	18%	4% (3 cases)
Skin	8%	9%	

- Renal toxicity
 Grade II-V was often irreversible
 Onset occurred within days of starting conditioning
 Investigators reduced Clo dose and extended infusion
 Hand-foot syndrome occurred in 7 cases
- Severe altered mental status occurred in 4 cases
- Fatal heart failure occurred in 3 cases
- Early fatal shock occurred in 4 cases

 Occurred during or immediately after completion of conditioning

 Possibly cytokine release syndrome (hypotension, respiratory distress, multiorgan failure)

Besien K, et al. Biol Blood Marrow Transplant 2012; 18: 913-21.

Outcomes

	100 days	1 year
TRM	19%	26%
Relapse		29%
PFS	60%	45%
os	80%	59%

- Age > 55 predicted for increased TRM
- Disease risk category was the only significant predictor of PFS
- GFR < 80 mL/min/1.73m² on d0
 - Predictor of TRM, OS and relapse
 - Major predictor of long term outcome

Conclusions

- MTD: Clo 40 mg/m 2 x 5 and MeI 140 mg/m 2 x 1 with alemtuzumab 20 mg daily x 5 days
- Clo sufficiently immunosuppressive
 - Potentially more than fludarabine
 - Improved chimerism results compared to previous fludarabine
- Efficacy

 PFS is similar to previous reports of Flu Mel Alemtuzumab (1 yr PFS 38%)
- Toxicity
 Unexpected renal toxicity
 - Rare cytokine release syndrome

 - Neurologic toxicity
 Similar TRM compared to Flu Mel Alemtuzumab (1 yr TRM 33%)

van Besien K, et al. Biol Blood Marrow Transplant 2012; 18: 913-21. van Besien K, et al. J Clin Oncol 2006; 25: 5728-38.

Other Selected Trials Population Study Regimen Author Outcomes -Safe regimen -AEs: hepatic, renal (5), CNS (2), cardiac (1) -OS 77% (1yr) -EFS 71% (1yr) Leukemia or MDS, high risk Clo 30-40 mg/m² x 5 Mel 100-140 mg/m² x 1 escalation Clo 52 mg/m² x 5 Cytarabine 1 gm/m² x 6 TBI 12 Gy -TRM d100 7.6% -Relapse 27% -1yr PFS 52% and OS 46% Phase I/II ALL or AML (MRD, MUD, Cord) Hematologic malignancies (Cord) Flu 10 mg/m² x 4 Clo 30 mg/m² x 4 Bu AUC 5000 x 4 TBI 2 Gy x 1 -88% full chimerism at d30 -No DLTs -100% engrafted -41% relapsed Soni S, et al Leukemia, pediatric patients (MRD or MUD) -58% alive and disease free

ARS Question #2

Clofarabine satisfies which of the following goals of HCT conditioning regimens for patients with ALL?

- a. Active in ALL
- b. Provides sufficient immune suppression
- c. Minimal non-hematologic toxicities
- d. All of the above

Summary of Clo Data

- 2nd generation nucleoside analog
- Evaluated in myeloablative, reduced intensity and non-myeloablative regimens
- · Evaluated in pediatric and adult patients
- Toxicity
 DLTs: reversible transaminitis
 - Unexpected renal toxicity
 - Rare capillary leak syndrome
- Efficacy
 - Favorable results compared to historical controls
 - Phase III trial ongoing

Bendamustine

Bendamustine

- · Bifunctional alkylating agent
- Nitrogen mustard group
- Benzimidazole ring
- Butyric acid side chain
- · FDA approved:
 - Chronic lymphocytic leukemia (CLL) 100 mg/m² d1 and 2 every 28 days
 - Indolent B cell non-hodgkin lymphomas (NHL) 120 mg/m² d1 and 2 every 21 days

Tageja N, et al. Cancer Chemother Pharmacol 2010; 66: 413-23. Cheson B, et al. J Clin Oncol 2009; 27(9): 1492-1501.

Mechanism of Action

- Causes intra and inter-strand cross-links between DNA bases
 - More extensive strand breaks
 - More durable
 - Slower DNA repair
- · Unique mechanisms
 - Activate DNA-damage stress response and apoptosis
 - Inhibit mitotic checkpoints
 - Induce mitotic catastrophe
- Incomplete cross-resistance with other alkylators
- · Not considered myeloablative

Tanaia N. et al. Cancer Chemother Pharmacol 2010: 66: 412-22

Toxicity

- · DLTs from Phase I trials
 - Thrombocytopenia at dose of 180 mg/m²
 - Cardiac toxicity at dose of 280 mg/m²

	Phase	II NHL	Phase	III CLL
Grade	I-II	III-IV	1-11	III-IV
Neutropenia	26%	58%	4.3%	23%
Thrombocytopenia	62%	25%	13%	11.8%
Lymphopenia	39%	55%	0	6.2%
Anemia	83%	11%	19.2%	2.5%
Infection	42%	19%	4.3%	1.9%
Nausea	71%	4%	18.7%	0.6%
Fatigue	46%	11%	7.5%	1.2%
Infusion reactions/Rash	12% (1 gra	de IV event)	9.3%	

Cheson B, et al. J Clin Oncol 2009; 27(9): 1492-1501.

Cheson B, et al. Clin Lymph Myeloma and Leukemia 2010; 10(6): 452-7.

Knauf M, et al. J Clin Oncol 2009: 27: 4278-84

Phase II: FBR

- · Expanded Phase II trial
 - Lymphoid malignancies
 - MRD or MUD
- GVHD prophylaxis: Tacrolimus and mini-MTX

	D-13	D-6	D-5	D-4	D-3	D-2	D-1	D0	D+1	D+8
Flu 30 mg/m²			_		→					
Benda 130 mg/m²			_		-					
Rituximab mg/m²	375	1000							1000	1000
ATG* 1 mg/kg						_	→			

*ATG for recipients of MUD only

Khouri I, et al. Blood 2013; 122(21): Abstract 541.

Demogr	aphics	
	N = 56	
Age, median	56 (range: 59-70)	
Histology		
Mantle cell	16 (29%)	
Chronic lymphocytic leukemia (CLL)	15 (27%)	
Follicular	13 (23%)	
Diffuse large B cell	9 (16%)	
Peripheral T cell	3 (5%)	
Median prior treatments	3	
Prior autologous transplant	7 (13%)	
Disease status		
CR/CRu	27 (48%)	
Partial response (PR)	23 (41%)	
Refractory	6 (11%)	
Donor		
MUD	30 (54%)	
MRD	26 (54%)	

- Engraftment
 - Neutrophil: 6 days (range: 0-16 days)

 Median days on filgrastim: 1.5

 23% did not require filgrastim
 - Platelet: 11 days (range; 10-19)
 - 87.5% did not require platelet transfusions
- Chimerism
 - Median d30: 85% myeloid and 97% T cells
- Increased to 100% by d90
- Acute GVHD grade II-IV: 12.5%
- Chronic GVHD (extensive): 14%

Outcomes

- TRM at 1 yr was 9%
 - 6 deaths
 - Cause of death (2 each): GVHD, infection and progression
- · Median follow-up 12 months
- OS 89%
- PFS 80%

Khouri I, et al. Blood 2013; 122(21): Abstract 541.

1	1
	•

Conclusion

- · Very well tolerated regimen
 - Minimal hematologic toxicity
 - Low TRM
 - Feasible in older population
 - Acceptable engraftment
- Similar toxicity to previous reports for FCR (fludarabine cyclophosphamide rituximab)
- Potentially suitable for outpatient alloHCT

Khouri I, et al. Blood 2013; 122(21): Abstract 541. Khouri I, et al. Experimental Hematology 2004; 32: 28-36.

Phase I: Benda and Mel

- · Phase I, dose escalation trial
- Multiple myeloma patients eligible for AutoHCT
- Regimen
 - Mel 100 mg/m² on d-2 and d-1
 - Bendamustine dose escalation

Dose Cohort	d-2	d-1
1		30 mg/m ²
2		60 mg/m ²
3		90 mg/m ²
4	60 mg/m ²	60 mg/m ²
5	90 mg/m ²	60 mg/m ²
6	125 mg/m ²	100 mg/m ²

Mark T, et al. Biol Blood Marrow Transplant 2013; 19: 831-7.

Demographics

	N = 25
Age, median	56 (range: 37-65)
Intermediate-High risk disease by Durie-Salmon International Staging System	75% 55%
High risk cytogenetics	28%
Disease Status at time of HCT sCR CR VGPR PR PD	20% 20% 32% 24% 4%

sCR: stringent CR; VGPR: very good partial response; PD: progressive disease

Mark T, et al. Biol Blood Marrow Transplant 2013; 19: 83

1	ാ
- 1	
J	

- Engraftment
 - Neutrophil: 11 days (range: 9-14 days)
 - Platelet: 13 days (range: 11-21 days)
- Overall response rate (ORR) 79% at d100
- · Median PFS 26.4 months
- Median OS was not reached, actuarial 2 yr OS 70%
- 6 patients died during the study, all from progressive myeloma

Mark T, et al. Biol Blood Marrow Transplant 2013; 19: 831-7.

Toxicity

- TRM 0% at d100
- DLT: respiratory failure occurred in 1 patient
- · No cardiac events attributed to benda

	Grade I-II	Grade III	Grade IV
Mucositis	85%	8%	
Diarrhea	84%	4%	
Nausea/vomiting	88%		
Anorexia	64%		
Fever	52%		
Sepsis			4% (1 patient)
Dyspnea	20%		4% (1 patient)
Fatigue	72%		
Rash	25%		

Conclusions

- · MTD was not reached
- · Safe combination
 - Similar mucositis rates to Mel alone
 - 1 DLT was not attributed to benda
 - No cardiac toxicity observed
- Not designed to assess efficacy

Mark T. et al. Biol Blood Marrow Transplant 2013: 19: 831-

Phase I-II: BeEAM

- Phase I-II, dose escalation trial
 - Benda replaces carmustine in BEAM for AutoHCT
 - Relapsed/resistant non-hodgkin lymphoma (NHL) or hodgkin lymphoma (HL)

0 ,		_ ` '					
	d-7	d-6	d-5	d-4	d-3	d-2	d-1
Benda 1: 160 mg/m²/day 2: 180 mg/m²/day 3: 200 mg/m²/day		→					
Cytarabine 400 mg/m²/day			_			→	
Etoposide 200 mg/m²/day			_			→	
Mel 140 mg/m²/day							\uparrow

Visani G, et al. Blood 2011; 118(12): 3419-25.

Demographics

	N = 43
Age, median	47 (range: 18-70)
Disease HL	15 (35%)
NHL	28 (65%)
Median lines of previous therapy	2 (range: 2-5)
Disease status at enrollment Primary refractory	21 (49%)
Relapse	22 (51%)
Disease status at HCT	
CR2 or beyond	16 (37%)
Partial response	20 (46%)
No response/progression	7 (17%)

Outcomes

- Engraftment
 - Neutrophil: 10 days (range: 8-12 days)Platelet: 13 days (range: 8-39 days)

- Safety
 No DLTs in Phase I
 TRM 0% at d100

- TRM 0% at d100

 Regimen related toxicity

 Elevated LFTs: 44%

 Mucositis (grade III-IV): 26%

 Gastroenteritis (grade II-III): 35%

 Mild nausea/vomiting

 Fever: 51% (1 documented fungal infection)

Visani G, et al. Blood 2011; 118(12): 3419-25.

15

- 81% alive and disease free at 18 months
- · Greater probability of being disease free
 - Chemosensitive
 - NHL
- Median DFS
 - HL: 19 months
- NHL: not reached
- · 50% PET+ patients became negative after HCT
- Relapse in 14%
 - Median 3 months post-HCT
 - 2 patients died

Visani G, et al. Blood 2011; 118(12): 3419-25.

Conclusions

- · Acceptable safety profile
 - No DLT
 - No cases of pneumonitis, dose-limiting cardiac toxicity or VOD
 - Low TRM
- Similar toxicity compared to previous reports of BEAM
- · Effective regimen compared to historical data
- · Further studies are planned

Visani G, et al. Blood 2011; 118(12): 3419-25. Argiris a, et al. Ann Oncol 2000; 11: 665-72.

ARS Question #3

The addition of bendamustine to melphalan did not appear to increase rates of mucositis compared to melphalan alone.

- a. True
- b. False

Bendamustine Conclusions

- · Current data
 - Included in regimens for auto and allo HCT
 - Lymphoid malignancies and myeloma
 - *In vitro* data supporting synergy with other agents
- Safety
 - Minimal non hematologic toxicity
 - Low TRM
- Efficacy
 - Favorable outcomes
 - No direct comparison with current standards

Gemcitabine

Gemcitabine

- · Deoxycytidine analog
- Synergy with alkylating agents through inhibition of DNA repair
- · Limited extramedullary toxicity at standard doses
- FDA approved
 - Pancreatic, breast, non-small cell lung and ovarian cancers
 - Dose range: 1000-1250 mg/m²

Nieto Y, et al. Biol Blood Marrow Transplant 2012; 18: 1677-8

,			
,			
,			

Mechanism of Action

- · Activation of gemcitabine
 - Phosphorylated by dCK to monophosphate
 - Further phosphorylation by other phosphokinases to active triphosphate
- · Anti-cancer activity
 - Incorporated into DNA and inhibits DNA polymerases leading to chain termination
 - Inhibits DNA repair enzymes
 - Inhibits RR

Guchelaar H, et al. Cancer Treatment Reviews 1996; 22: 15-31.

Fixed Dose Rate (FDR) Infusions

- Rate limiting step in activation is phosphorylation by dCK
 - Saturated at Gem concentrations above 20 µmol/L
 - Maximal activation of Gem occurs when concentrations are 10-20 µmol/L
 - FDR infusion of Gem 8-10 mg/m²/min achieves the target concentration
- · Standard infusion time is 30 minutes
 - Cells are unable to activate a large portion of Gem
 - Possible inhibition of dCK

Gandhi V, et al. J Clin Oncol 2002; 20: 665-73. Brand R, et al. Investigational New Drugs 1997; 15: 331-341.

Comparison to Cytarabine

- · More potent inhibitor of DNA synthesis
- · Higher intracellular accumulation of triphosphate
 - Faster membrane transport
 - Greater effectiveness of dCK for activating gemcitabine
 - Longer retention of triphosphate

Guchelaar H, et al. Cancer Treatment Reviews 1996; 22: 15-3:

,		
,		
,		
,		

Toxicity

- · Myelosuppression considered DLT at standard
 - More severe in FDR infusions
- · Common non-hematologic toxicities
 - Nausea/vomiting
 - Mild skin rash
 - Fever and flu-like syndrome
 - Elevated LFTs

Gem Bu Mel

- · Phase I-II, single center, dose escalation trial
- Refractory/relapsed lymphoma or myeloma
- Eligible for first AutoHCT
- · Rationale for addition of Gem to Bu Mel
 - Synergy with alkylating agents
 - Efficacy in lymphoma
 - Minimal non hematologic toxicity
 - In vitro studies demonstrated superior activity of 3 drug combination over 2 drug combinations

Gem Bu Mel Regimen

	d-10	d-9	d-8	d-7	d-6	d-5	d-4	d-3	d-2	d-1	0	d+1	d+2
Gem 225-2775 mg/m²/day Daily 3 dose 2 dose			x x x	x	x x	х		x x x	x				
Bu AUC 4000 μMol/min	test		х	x	х	х							
Mel 60 mg/m²/day								x	x				
Rituximab (CD20+) 375 mg/m ²												х	x

- Gem infused at FDR of 10 mg/m²/min after 75 mg/m² bolus
- Supportive care

 Palifermin, cryotherapy, glutamine and caphosol (®) for mucositis prevention

 Filgrastim starting on d+5

Demographics

	N = 133				
Age, median	41 (range: 18-65)				
Disease					
HL	80				
NHL	46				
Myeloma	7				
# Prior regimens, median	3 (range: 2-9)				
Prior radiation	32				
Disease status					
CR	60 (45%)				
PR	34 (26%)				
PD	39 (29%)				
PET positive (HL and NHL)	64/126 (50%)				

Nieto Y, et al. Biol Blood Marrow Transplant 2012; 18: 1677-86.

Regimen Related Toxicity

- Daily and 3 dose schedule excessive toxicity
- · 2 dose schedule less toxic
 - Gem MTD 2775 mg/m²/dose

 - Mucositis was DLT
 Started median d+4
 Persisted for 2 days at maximum severity
 65% required narcotic PCA for median 6 days
 Rash (grade I-II) common
 Reversible transaminitis common (75%)
 - Start at median d+1 and resolve in 1 week
 No cases of VOD
 Mild bilirubin elevations in 11%
 - Pulmonary: 2 cases pneumonitis (grade II) in patients who received prior radiation
- 2 patients died from infection

Outcomes HL CR 62% and response rate (RR) 88% (measurable disease) EFS 54% and OS 72% 37 (46%) relapsed and 20 died (n = 80)CR 88% and RR 96% (measurable disease) FFS 60% (B cell) and 55% (T cell) 25 alive and in CR All 3 Burkitt's relapsed and died NHL (n = 46)Myeloma CR 57% and RR 71% 4 relapsed and died from progression (n = 7)

Conclusions

- Gem MTD 2775 mg/m²/dose for 2 doses
- Toxicity
 - Mucositis was DLT
 - Rash and reversible transaminitis were common
 - More toxic than previously reported Bu Mel regimen
- Efficacy
 - Favorable results compared to historical data in high risk populations
 - No conclusion in myeloma due to small number of patients

Nieto Y, et al. Biol Blood Marrow Transplant 2012; 18: 1677-86. Kebriaei P, et al. Biol Blood Marrow Transplant 2011; 17(3): 412-20.

Comparison of Regimens for HL

- Poor risk or refractory HL patients undergoing AutoHCT
- Described 3 separate cohorts

BEAM

Carmustine 300 mg/m² daily x 1
Etoposide 200 mg/m² Q12 x 4 days
Cytarabine 200 mg/m² Q12 x 4 days
Mel 140 mg/m² daily x 1

Bu Mel

• Bu AUC 5000 μMol/min daily x 4 days • Mel 70 mg/m² daily x 2 days

Gem Bu Mel

• Gem 2775 mg/m² daily x 2 • Bu AUC 4000 µMol/min daily x 4 • Mel 60 mg/m² daily x 2

lieto Y, et al. Biol Blood Marrow Transplant 2013; 19: 410-7.

Demographics

	BEAM (N = 57)	Bu Mel (N = 39)	Gem Bu Mel (N = 84)	P-value
Age, median	36 (20-63)	31 (17-69)	32 (19-61)	0.7
Primary refractory disease	40%	31%	61%	0.001
First remission duration 3-6 months 6-12 months >12 months	82% 13% 5%	75% 10% 15%	83% 5% 12%	0.2
Bulky tumor at relapse	24%	20%	38%	0.03
Salvage regimens > 1	39%	49%	44%	0.6
PET+ at transplant	27%	28%	51%	0.001
Tumor growth at transplant	3%	6%	26%	< 0.0001
Prior radiation	30%	30%	27%	0.9
Post-transplant radiation	9%	21%	26%	0.02

Nieto Y, et al. Biol Blood Marrow Transplant 2013; 19: 410-7

	BEAM	Bu Mel	Gem Bu Mel	P-value			
EFS	39%	33%	57%	NR	l		
EFS (combined)	35	5%	57%	0.01	I		
os	59%	52%	82%	NR	Γ		
OS (combined)	54	1%	82%	0.04	11		

- No difference in outcome BEAM vs Bu Mel
- Independent variables for worse EFS
 Regimen other than Gem Bu Mel
 PET positive
 # salvage therapies
- · Independent variable for worse OS
 - Regimen other than Gem Bu Mel
 PET positive

Nieto Y, et al. Biol Blood Marrow Transplant 2013; 19: 410-7.

Conclusions

- Efficacy
 - Improved outcome with Gem Bu Mel (EFS and OS) despite poor prognostic features
- · Limitations
 - No patient received brentuximab
 - Not randomized
 - Limited toxicity data reported
 - Different median follow up times

Other Selected Trials

Author	N	Study Design	Population	Intervention	Outcomes
Anderlini P, et al	15	Single arm, prospective	Relapsed HL (non- progressive) Adults MRD or MUD	Gem 800 mg/m ² d-7 Flu 33 mg/m ² d-5 \rightarrow d-2 Mel 70 mg/m ² d-3 \rightarrow d-2 ATG 4 mg/kg for MUD	• 1 graft failure • 100% donor (13/13) • d100 TRM 13% • OS 87% and PFS 49% at 18 mo
Nieto Y, et al	52	Phase I, dose escalation	Relapsed or refractory solid tumors and lymphomas AutoHCT	Gem FDR d-6 D 300-350 mg/m² d-5 Mel 50 mg/m² d-3→d-1 C 333 mg/m² d-3→d-1	• Gem MTD 12000 mg/m² • DLT enteritis • CR 50% • 2yr OS 79%, EFS 49%
Arai S, et al	92	Phase I/II, dose escalation	Relapsed or refractory HL Adults AutoHCT	Gem d-13 & d-8 V 30 mg/m ² d-13 & d-8 BCNU 10 mg/kg d-6 E 60 mg/kg d-4 Cv 100 mg/kg d-3	Gem MTD 1250 mg/m2 Early TRM 3% BCNU toxicity 15% 2yr OS 83%, EFS 67% 2yr NRM 6%

22

	•	•	

Gem Conclusion

- Efficacy
 - In vitro data supports synergy with alkylating agents
 - Gem Bu Mel combination may provide improved outcomes in HL patients
- Safety
 - DLT: mucositis
 - Increased rates of toxicity compared to Bu Mel, but mostly reversible
 - Common toxicities: skin, transaminitis

ARS Question #4

The dose limiting toxicity of gemcitabine in combination with busulfan and melphalan is

- a. Veno-occlusive disease
- b. Pulmonary fibrosis
- c. Mucositis
- d. Cutaneous reactions

Other Emerging Agents

- · Ibritumomab Tiuxetan
 - Radioimmunoconjugate targeting CD20
- Ofatumumab
 - Fully human monoclonal antibody targeting CD20
- Vorinostat
 - Histone deacetylase inhibitor
- Azacitidine
 - Hypomethylating agent
- Brentuximab vedotin
 - Antibody drug conjugate targeting CD30

_			
-			
-			
-			
-			
-			
-			
-			
_			
-	 	 	
•			
-			

Conclusions

- · Current data
 - Majority are single arm trials
 - Comparison to historical data
- DLT in conditioning regimens
 - Clo: transaminitis
 - Benda: none identified at current doses in HCT
 - Gem: mucositis
- Further study is ongoing to determine comparative efficacy