Hematopoietic Stem Cell Transplant (HCT) in HIV+ Patients: Clinical Pearls

Karim Ibrahim, DClinPharm, BPharm Senior Haematology and Bone Marrow Transplant Pharmacist St Vincent's Health Network, Sydney, Australia

Objectives

- Summarize the treatment of HIV-associated lymphoma in the post combination antiretroviral therapy (cART) era.
- Summarize the use of autologous stem cell transplantation (AutoSCT) for the management of HIV-associated lymphoma.
- Examine the current literature on using allogeneic stem cell transplantation (AlloSCT) for the management of hematologic malignancies in HIV-infected patients.
- Recognize the pharmaceutical considerations and potential drug-drug interactions for HIV-infected patients receiving hematopoietic stem cell transplant (HCT).

The rise of AIDS/HIV-related lymphomas

- 1981-Primary central nervous system non-Hodgkin lymphoma (NHL)
- 1985 systemic NHL recognised as an AIDS defining cancer
- 1996 Primary effusion lymphoma (PEL)
- 1997 Plasmablastic NHL

The rise of non AIDS-defining Cancers

- HIV infected individuals are at an increased risk of developing other haematological cancers:
 - Hodgkin lymphoma (11-14 fold)
 - Leukemia (3 fold)
 - Multiple Myeloma (3 fold)
- These cancers are <u>not</u> classified as AIDS-defining cancers. Non-AIDS defining Cancer (NADC).

Spano JP et al. Eur J Intern Med 2002;13(3):170-9 Grulich, A et al. Lancet 2007;370(9581):59-67

Treatment of HIV-related lymphomas

• In the pre-cART era (before 1996)

o Poor outcomes using different chemotherapy regimens.

- Short overall survival (OS) time of 5-8 months.
- o High rate of opportunistic infections.
- o High relapse rate.

cART= combination antiretroviral therapy

Levine et al. Cancer 1991;68(11):2466-72. Fisher et al. NEJM 1993;328(14):1002-6 Kaplan et al. NEJM 1997;336(23):1641-8.

Study	Rx	Sample size	Complete Response	Overall survival
Kaplan et al. Blood 2005 ⁽¹⁾	R-CHOP vs. CHOP	149	57% vs. 47%	55% @ 2-year
Boue et al. JCO 2006 ⁽²⁾	R-CHOP	61	67%	75% @ 2-year
Spina et al. Blood 2005 ⁽³⁾	R-CDE	74	70%	64% @ 2-year
Ribera et al. BMJ 2008 ⁽⁴⁾	R-CHOP	81	69%	56% @ 3-year
Sparano et al Blood 2010 ⁽⁵⁾	R-EPOCH vs. EPOCH then R	106	73% vs. 55%	70% vs. 67% @ 2-year

But...

- The management of HIV-infected patients with lymphoma is frequently complicated by:
 - treatment-induced immunosuppression (e.g. neutropenia)
 - co-morbid disease (e.g. opportunistic infections)
 - drug interactions (e.g. chemotherapy and anti-retroviral therapy)

cART during chemotherapy

Continue cART or discontinue cART during chemotherapy?

- Some clinicians recommend continuing cART during chemotherapy. Some don't...
- Concomitant administration of cART and chemotherapy has been shown to reduce the incidence of opportunistic infections and improves overall survival/complete response.

Study	No/type of patients	Outcome
Cortes et al. Cancer 2002 ⁽⁶⁾	13 patients Prospective study investigating the use of hyper-CVAD in patients with HIV-related Burkitt Lymphoma	Nine out of 13 patients were on cART during chemotherapy. All fou patients who did not receive cART died
Antinori et al. AIDS 2001 ⁽⁷⁾	44 patients Retrospective study in patients who received CHOP/m-BACOD for HIV-related NHL	Virological response to cART was the only factor independently associated with complete response following chemotherapy
Vaccher et al. Cancer 2001 ⁽⁸⁾	104 patients Retrospective analysis of two prospective trials in patients with HIV-related NHL	Patients on CHOP plus cART had fewer opportunistic infections (18 vs. 52%, p=0.05) and longer OS (38 vs. 85%, p=0.001) compared to CHOP only arm
Hoffmann et al. AIDS 2003 ⁽⁹⁾	203 patients Retrospective observational study- patients with AIDS-related lymphoma	Response to cART was associated with prolonged survival. Patients receiving cART were more likely to achieve CR (71% vs. 48%, p=0.006)
Barta et al. Blood 2013 ⁽¹⁰⁾	1546 patients Systematic review of 19 prospective clinical trials-patients with HIV-related NHL	Concurrent use of cART with chemotherapy was associated with improved CR rates (OR 1.89, P=0.005) and a trend towards improved OS (HR 0.78, P=0.07)

cART and chemotherapy drug interactions

- The likelihood of cART-chemotherapy pharmacokinetic drug interactions is high.
- Protease inhibitors (PIs) may increase the plasma concentrations of chemotherapy- increased toxicity and treatment delays
- Non nucleoside reverse transcriptase inhibitors (NNRTIs) may decrease the plasma concentrations of chemotherapy- decreased efficacy and treatment failure
- · Many chemotherapy drugs are also metabolized by the CYP system.
- Pharmacodynamic drug interactions e.g. zidovudine (AZT) and chemotherapy may increase the risk of hematological toxicity.

Walubo A. Expert Opin Drug Metab Toxicol 2007;3(4):583-98

Drug	Metabolism	Interaction with PIs (more with ritonavir)	Interaction with NNRTIs
Cyclophosphamide	CYP2B6, 2C19 (active) CYP 3A4 (inactive, toxic)	↑Via CYP2B6 induction ↑CYP3A4 inhibition	
Etoposide	CYP3A4	↑via CYP3A4 inhibition	♦Via CYP3A4 induction
/incristine/vinblastine	CYP3A4	↑↑via CYP3A4 inhibition	♦Via CYP3A4 induction
Doxorubicin	CYP3A4 involved in free radical generation in vitro.	May ↑ reduction via CYP2B6 induction to free radical and hence ↑ antineoplastic properties	May↑ reduction via CYP2B6 induction to free radical and hence ↑ antineoplastic properties
Prednisolone	CYP3A4	↑via CYP3A4 inhibition	✓ Via CYP3A4 induction

cART and Chemotherapy Drug Interactions-Lessons learnt

- PI-based regimens were significantly associated with more treatment related toxicities compared to non-PI based regimens.
- Patients on PI-based regimens were less likely to complete their stage appropriate chemotherapy treatment.
- PI-based regimens should be used with extreme caution with vinca alkaloids. (avoid or chemotherapy dose reduction is warranted).
- Zidovudine use should be avoided in patients treated with chemotherapy due to the significant increase in the risk of haematological toxicities.

Vaccher et al. Cancer 2001;91(1):155-63. Bower et al. Blood 2004;104(9):2943-6. Ibrahim K, Milliken S. Blood. 2013;122(21):3843.

Take Home Messages

- The advent of cART has completely changed the picture for HIVassociated lymphomas.
- Major improvements in the outcomes of HIV-associated lymphomas have been reported. Outcomes are now parallel to that observed in the HIV-negative patients.
- Current evidence supports concurrent use of cART with chemotherapy for HIV-associated lymphoma.
- If appropriate, non-PI based regimen should be considered during chemotherapy for HIV-associated lymphoma to minimize treatmentrelated toxicities.
- Avoid AZT with chemotherapy.

Audience Response Question #1

- Which of the following is TRUE regarding the treatment of HIV-associated lymphoma
 - A. Introduction of cART had minimal effect on outcomes of HIV-associated lymphoma
 - B. Zidovudine should be used concurrently with chemotherapy for HIV-associated lymphoma
 - C. Current evidence supports ceasing cART during chemotherapy for HIV-associated lymphoma
 - D. Treatment outcomes of HIV-associated lymphoma are now similar to those observed with HIV negative patients

HCT and HIV

- In the HIV-negative setting, both autologous and allogeneic HCT have become well-established therapeutic options for the treatment of various hematological malignancies
 - $\circ~\ensuremath{\mathsf{Patients}}$ in remission but are at risk of relapse
 - $_{\odot}\,$ Patients with relapsed/refractory disease
- HIV+ve patients on cART are better able to tolerate chemotherapy and results of treatment are similar now to non-HIV infected patients
- Consequently the use of HCT have been investigated in the post cART era

Autologous HCT

- First case report 1996, Gabarre et al, BMT.
- 40 year old male with NHL given BEAM (Carmustine, Etoposide, Cytarabine and Melphalan) conditioning.
- Multiple opportunistic infections (OI), including cytomegalovirus (CMV), Mycobacterium avium Complex (MAC) and cryptosporidiosis.
- Patient died but confirmed possibility of stem cell collection and engraftment.
- Post cART
- 6 non-randomized studies
 2 cohort studies have compared HIV+ to non-HIV

Gabarre et al. BMT 1996;18:1195-7

		Lympho	oma		
Study	Failure to mobilise	Patients (n)	Tx related mortality	Median f/u (months)	Overall Survival (%)
Krishnan et al. Blood 2005 (11)	0	20	5%	32	85
Spitzer et al. BBMT 2008 (12)	2	20	5%	6	74
Re et al. Blood 2009 (13)	4	27	0	44	75
Gabarre et al. Haematologica 2004 (14)	NR*	14	0	36	71
Serrano et al. EBMT meeting 2010 (15)	0	33	0	61	61
Balsalobre et al.	NR*	68	7.5%	32	61

		ympric	mas	
Study	Antiretroviral Therapy	CD4 cells/ul	Neutropeni c infection	Late Complications
Gabarre et al. Haematologica 2004 (14)	Yes	300 (77-534)	14/14 (100%) 1 gde 3	2 CMV reactivations, 2 deaths-1 liver cancer @25mths, -1 AIDS @ 16mths
Krishnan et al. Blood 2005 (11)	Yes	174 (30-500)	12/20 (60%)	1 CMV retinitis, 2 CMV viraemia, 1 aspergillus, 2 Pneumocystis jiroveci pneumonia (PJP), 2 VZV, 1 hepatitis C virus (HCV)
Serrano et al Exp Hematol 2005 (17)	Yes	186 (72-325)	11/11 (100%)	1 CMV viraemia, 2 VZV(1 fatal), 1 pneumonitis
Spitzer et al. BBMT 2008 (12)	Yes	203 (53-574)	6/20 (30%)	1 c.difficile, 3 CMV viraemia, 4 HSV, 1 UTI
Re et al. Blood 2009 (13)	Yes	218 (17-561)	12/27 (44%)	6 VZV, 2 candida, 4 CMV viraemia, 1 CMV retinitis
Balsalobre et al. JCO 2009 (16)	Yes - 95%	162 (8-1159)	NR	3 second malignancies, 7 deaths-2 HIV-related, 4- bacterial 1 unknown

		ympholia
Outcome	HIV+ NHL (Case) N= 29	HIV- NHL (Control) N=29
Days to reach neutrophil count of > 0.5 x10 ⁹ /L	10 (5-19)	11 (9-35)
Total number of infections	28	14
Bacterial	17	11
Fungal	0	1
Viral	1	1
OI (CMV, Varicella zoster virus [VZV])	4	0
Unclassified &	6	1

Autologous HCT for HIV-associated lymphoma **Poor Prognostic Features**

Not achieving CR

- Chemo-resistant disease prior to HCT
- > 2 prior treatments
- Marrow involvement, stage IV .
- Poor performance status
 CD4 count < 100 cells/µL
- NHL other than DLBCL
- Recent opportunistic infections
- High HIV DNA levels
- · Hepatitis co-infection did not adversely affect results

 - Re A et al. Blood. 2009;114(7):1306-1313 Gabarre J al. Haematologica. 2004;89(9):1100-1108 Bortolin et al, 2010. AIDS Research and Human Retroviruses 26(2): 245-251

Stem Cell Mobilization in HIV+ Patients

- · HIV virus is known to alter the bone marrow microenviroment.
- cART is more likely to improve stem cell function/recovery if HIV viral load remains suppressed
- · Consider continuation cART during high dose chemotherapy.
- · Avoid zidovudine.
- G-CSF does not appear to exacerbate HIV replication (Michieli, et al Cell Transplantation;2011(20)3:351-370)

Take Home Messages

- Autologous HCT is a feasible and effective option for HIV patients with hematological malignancies. •
- · Survival outcomes appear to be parallel to HIV-negative patients.
- · Opportunistic infections are common, especially viral infections.
- CD4+ counts recover after 6-12 months post HCT.
- Continue cART
- Avoid zidovudine during high dose chemotherapy/mobilization.

Audience Response Question #2

- Which of the following is NOT considered a poor prognostic feature for patients undergoing autologous HCT for HIV-associated lymphoma?
 - A. Poor performance status
 - B. Undetectable HIV viral load at HCT
 - C. CD4 count < 100cells/µL

Allogeneic HCT for HIV-associated haematological malignancies

- Greater challenges
 - chronic immunosuppression
 - risk of opportunistic infections
 - complex drug interactions
- Success with solid organ transplantation
 - allayed concerns regarding chronic immunosuppression
 - HIV viral load could still be controlled by cART
 - drug interactions due to cytochrome P-450 (CYP) inhibition by certain antiretrovirals were managed by dose adjustments of calcineurin inhibitors.

Allogeneic HCT- Literature Case Reports

- Since the introduction of cART there have been increasing reports of successful allogeneic HCT.
- Since 2000 increasing use of reduced intensity conditioning (RIC).
- Little data on immune reconstitution post transplant but it appears not too different from the HIV negative population.
- Almost all cases continue cART and engraftment does not appear impaired. Opportunistic infections do not appear increased.
- ? may have a secondary benefit in reducing the pool of latent HIV-infected lymphocytes.

	CIB	Allo MTR re	ogenei etrosp	c HCT ective revi	ew	
	Patients (n)	Disease	Donor	Conditioning	cART	Survival @ 59mths
Pre-1996	14	6 NHL 6 AML 2 non- haem	13 sib 1 MUD	All Myeloablative conditioning (MyAb)	None	2/14 14%
Post-1996	9	4 CML 4 NHL 1 AML	6 sib 3 MUD	6 MyAb 3 Reduced Intensity Conditioning (RIC)	8	4/9 44%
Overall	23					6/23 26%

	Α	llogene	eic HCT	
case rep	orts o	f myelo	ablative	HCT + CART
Author	Disease	Donor	GVHD	Survival
Schlegel et al. JAIDS 2000 (18)	CML	sibling	limited	Alive @3 years
Sora et al. Exp Hematol 2002 (19)	AML	MUD	Grade II	Alive@42months
Tomonari et al. BMT 2005 ⁽²⁰⁾	ALL	Cord	None	Alive@15months
Polizotto et al. BMT 2010 (21)	AML	MUD	none	Died @ 2yr CRF
Serrano et al. Blood 2008 (22)	ALL	Sibling	Grade III	Died @ 36months
Hutter et al. NEJM 2009 ⁽²³⁾	AML	MUD	Grade 1	Alive @5years

Author	Disease	Donor	GVHD	Survival
Kang et al. Blood 2002 (24)	HL	sibling	acute grade II	Dead @ 12 months
Kang et al. Blood 2002 (24)	AML	Sibling	Acute grade II	Alive @24 months
Woolfrey et al. Blood 2008 (25)	AML	MUD	Acute grade III	Dead@10months
Woolfrey et al. Blood 2008 (25)	AML	sibling	none	Alive @6months
Bryant & Milliken BBMT 2010 (26)	NHL- PEL	sibling	none	Alive@8 years
Milliken. St Vincent's Hosp, Sydney 2010	NHL Plasmablastic	MUD	Extensive cGVHD	Alive@ 4 years
Milliken. St Vincent's Hosp, Sydney 2011	AML	MUD	acute grade I	Alive@ 2 years

Immune reconstitution after allogeneic HCT

- In autologous SCT-HIV+ patients on cART CD4+ counts recover after 6-12 months similar to HIV negative patients.
- The literature on allogeneic transplantation in HIV- positive patients is much more sparse.
- Data in the non-HIV population suggest that the rate of immune reconstitution after transplant is dependent on factors – type of conditioning regimen
 - development of graft versus host disease (GVHD).

Audience Response Question #3

- Which of the following is TRUE regarding the use of allogeneic HCT for HIV-infected patients with hematological malignancies.
 - A. Allogeneic HCT is a feasible option for HIV-infected patients with high risk hematological malignancies
 - B. GVHD seems to be minimal with HIV patients due to impaired immunity.
 - C. Continuation of cART during HCT is generally NOT recommended
 - D. The risk of opportunistic infections is generally very low

cART during HCT

- No evidence that concomitant cART adversely affects transplant outcomes –continue cART but watch for drug interactions!
- AZT use should be avoided in patients undergoing HCT due to the significant increase in the risk of hematological toxicities and potential delay in engraftment.
- PIs and NNRTIs are substrates and potent inhibitors or inducers of the CYP-450 system.

(e.g. CYP3A4 inhibition by ritonavir → Potential increase in the toxicities of cyclosporin, tacrolimus and sirolimus)

Antiretroviral	Class	Metabolism
agent		
Tenotovir	Nucleos(t)ide	Minimal systemic metabolism
	reverse	(renal excretion 70-80%)
Emtricitabine	transcriptase	Minimal systemic metabolism.
	inhibitor (NRTI)	(renal excretion 86%)
Abacavir		Hepatic elimination with no known effect
		on CYP450
Efavirenz		Potent inducer and inhibitor of CYP3A4.
		Efavirenz induces CYP2B6 and UGT1A1
	Non-nucleoside	Also inhibits CYP2C9 and 2C19.
Nevirapine	reverse	Substrate and a potent inducer of
	transcriptase	CYP3A4 and 2B6 enzymes
Etravirine	inhibitor (NNRTI)	Weak inducer of the CYP3A4 and
		CYP2B6. Weak inhibitor of CYP2C9 and
		moderate inhibitor of CYP2C19
Atazanavir		Inhibits CYP3A4 and UGT1A1
Darunavir	Protease	Primarily metabolised by CYP3A4.
	inhibitors (PI)	Inhibits CYP3A4
Ritonavir	-	Potent inhibitor of CYP enzymes in the
		following order 3A4>2D6>2C9>2C19
		Induces:CYP1A2,CYP2B6,CYP2C9/2C19
		and glucoronyl transferases
Raltegravir	Integrase inhibitor	Glucuronidation (UGT1A1) and has no
	(INSTI)	inhibitory or inductive potential in-vitro

cART during HCT

- Integrase-inhibitors (e.g. raltegravir) based regimens appears safe to use-minimal drug interactions.
- CCR5-antagonists (maraviroc). Maraviroc is a substrate for CYP3A4 and has no potential to induce or inhibit CYP450.
- Mucositis , nausea and vomiting Some PIs needs to be taken with food e.g. darunavir, atazanavir, ritonavir
- Stopping cART can lead to monotherapy e.g. antiretrovirals with long half-life (efavirenz)
- Added renal toxicity:
 Calcineurin inhibitors and tenofovir
- Supportive-therapy-cART drug interactions e.g. (acid suppressants, antifungals and corticosteroids).

Other considerations

- Antifungal prophylaxis
- PJP & toxoplasmosis prophylaxis§
- Antiviral prophylaxis (HSV/VZV)
- MAC prophylaxis if required (CD4-cell count < 75 cells/µL)
- CMV monitoring until day+100
- Monitoring of Viral load, CD4+ cell count closely after transplant. ٠
- Role for therapeutic drug monitoring (TDM) of cART §Consider using > 4 Double Strength (DS) tablets of cotrimoxazole per week. Ribera et al. CID1999;29:1461-6.

Audience Response Question #4 · Which of the following antiretroviral agents would be less likely to contribute to drug interactions with common immunosuppressant agents used in HIV patients undergoing allogeneic stem cell transplants.

- A. Atazanavir/ritonavir
- B. Efavirenz
- C. Raltegravir

Case Study

- February 2010 56yr-old male referred for consideration of allogeneic HCTx
- 2004 Large B-cell NHL, Rx with R-CHOP X 6
- March 2009 secondary MDS/AML 'erythroleukemia' with normal cytogenetics in first remission (induction chemotherapy and consolidation with HiDAC (high dose cytarabine x2 cycles)
- Good performance status.
- HIV Dx 2002, well controlled:
 Tenofovir/emriticabine/(TDF/FTC) once daily+ lopinavir/ritonavir (LPV/r) 400mg/100 mg twice daily
 C04 250 cells, HIV-viral load undetectable, no other AIDS diagnosis.
- · Elected not to have MUD HCT

Case Study

- October 2010 AML relapse
- 'self-referred' February 2011
- 2nd remission after re-induction and consolidation chemotherapy ٠
- · 44yr old male MUD identified
- May 2011 Fludarabine /Melphalan RIC bone marrow HCT
- · Discharged well Day+ 21, no major early complications

Case Study

- Only needed cyclosporin 20 mg once a day (level 158ug/L) and itraconazole 100mg/day (level 1752ug/L) as continued cART (TDF/FTC + LPV/r) •
- Post-HCT prophylaxis with cotrimoxazole, valaciclovir and azithromycin.
- Full donor chimaerism
- Day+46 cutaneous GVHD grade 2, settled with prednisone 25mg twice daily. •
- CD4 counts; 270 cells/µL pre-HCT; 36 cells/µL @ 3months; 104 cells/ μL @ 6months •
- · HIV viral load consistently 'not detected'

Case Study

- Dec 2012 admitted with neutropenic sepsis
- Bone marrow biopsy AML in remission
- Cultures all negative, neutropenia spontaneously recovered
- ? Viral infection
- Jan 2012 ataxia, diplopia x 1 week
- CT Space occupying lesion L frontal lobe @ grey/white matter junction ?
 abscess
- Negative CMV PCR, Toxoplasma serology, adherent to co-trimoxazole (1 DS tablet (800mg/160mg) three times a week), CD4 104 cells/µL, HIV-VL undetectable
- Condition rapidly deteriorated comatose, ICU

Case Study

- Bx of L frontal lesion CEREBRAL TOXOPLASMOSIS
- PCR positive
- Serum testing remains negative @ 2months
- Rx triple Rx with Clindamycin (6wks), Pyrimethamine (6wkspancytopenia), Sulfadiazine (1wk-rash) followed by Atovaquone maintenance. Levetiracetam for seizures
- H. zoster L scalp despite prophylactic valaciclovir (500mg BID)
- Chest infection
- Excellent recovery, D/C to rehab after 2 months, home @ 3 months, walks with a stick, eye patch

Conclusions

- Autologous HCT is an acceptable and safe strategy to salvage patients with relapsed/resistant NHL/HL-results similar to non-HIV infected population.
- Limited data for allogeneic transplantation in the post cART era but reasonable early results justifies its continued use. ? nonmyeloablative protocols.
- Immune reconstitution is similar to non-HIV patients for autologous HCT and appears satisfactory for allogeneic HCT, however opportunistic infections may be more common mandating careful post-HCT surveillance.
- cART may be continued to help optimize immune recovery- Watch drug interactions!

Best approach

 Therefore multidisciplinary cooperation between oncologists, HIV physicians and clinical pharmacists with <u>expertise in oncology and HIV</u> is needed to ensure that HIV patients with malignancies/presenting for HCT are suitably managed.

References

- 2.
- Kaplan LD et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or vision in the second 3. 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- AIDS-featured ymptoma. Auos. 2005; 17(10): 12 (19). Barta S, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013;122 (19) 3251-3262. 10.

References

- 11.
- 12.
- Krishnan A et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Biood. 2005;105(2):874-878. Spitzer TR et al. Dose-reduced bauditan, cyclophosphamide, and autologous stem cell transplantation for Marrow Transplant. 2005;14(1):960-960. Marrow Transplant. 2005;14(1):960-960. Re A et al. High-close therapy and autologous proteineral blood stem cell transplantation for Antorwo Transplant. 2005;14(1):960-960. Re A et al. High-close therapy and autologous proteineral blood stem cell transplantation as salvage treatment for ADS-related hymohran: cin-get meralite of the talian Cooperative Group on ADS and Turnors (GICAT) study with analysis of prognostic factors. Blood. 2009;114(7):1308-1313. Gabarro J. al. High-close therapy blue autologous here cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease. Haematologica. 2004;88(9):101-108. Serrano D et al (2010) Long term foliow-up of autologous stem cell transplantation in patients metals that a blank and the salvabulogous term cell transplantation in patients with HIV-related lymphoma. J Clin Oncol. 2009;27(13):2182-2180. Serrano D et al. His-associated tymphoma successfully treated with peripheral blood stem cell transplantation. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous previous transplant in an HV-1-positive man with chronic Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. Exp Hernabi 2005;33:487-404. Schleget P et al. Successful allogous term. E 13
- 14 15.
- 16
- 17.
- 18.
- Exp memiato 2005.34.67-994. Schegel P et al. Scoesski allogeneic bone marrow transplant in an HIV-1-positive man with chronic myelogenous leukemia. J Acquir Immune Defic Syndr 2000, 24.289–290. Sora F et al. Highly active antifectivotul therany and allogeneic C034(4) peripheral blood progenitor cells transplantation in an HIV/HCV cointected patient with acute myeloid leukemia. Exp Hematol 2002, 30:279–284. 19

References

- 20.
- 21.
- 22.
- 23.
- Tomonan'A et al. Unrelated cord blood transplantation for a human immunodeficiency virus-1-seropositive patient with acute lymphobiasile laukemia. Bone Marrow Transplant 2005, 9:221–252. The series of the series of the transplant and parameters in the setting of HV. Bone Marrow Transplant 2010, 49:549–568. Serraro D et al.: Allogeneic heratoposite stem cell transplantation in HV-posite patients with high risk heratologic malignancies. Blood 2009,112:abstract 4387. Huiter G et al.: Long-term control of HV by CCR5 Delat320 telms22 term-cell transplantation. N Engl J Med 2009, 80:692–698. Kang EM et al.: Monyteus blood conditioning followed by transplantation of genetically modified HLA-natched partiplema blood progenitor calls for hematicologic malignancies in patients with acquired immunodeficiency Woofrey AC et al.: Generation of HV in-Specific COB et al. responses following allogeneic hematopoteic cell transplantation. Blood 2008, 112:3448–3487. Byant A, Milken S. Successful Acquired-intensity conditioning allogeneic HCT for HIV-related primury efflusion lymphoma. Biol Blood Marrow Transplant 2008, 14:001–602. 24.
- 25.
- 26.

