Appendix 1 Table 3 Clinically relevant pharmacokinetic drug interactions with cyclosporine (CyA) | Drug | Data type | Proposed mechanism of interaction
by drug | Clinical effect (potential or actual) | Recommended action | |--|-----------------------------------|---|--|---| | Azole antifungals Fluconazole ³⁴⁻⁴² Itraconazole ^{11,43,44} Voriconazole ⁴⁵ | Case reports; PK studies | CYP3A4 inhibition | \uparrow CyA $C_{min} \rightarrow \uparrow$ toxicity
See Table 4
See Table 5 | Monitor levels. ↓ CyA dose
Monitor levels. ↓ CyA dose
Monitor levels. ↓ CyA dose | | Calcium channel blockers ^a
(diltiazem, verapamil) ⁴⁶ | PK studies; case reports | CYP3A4 inhibition | \uparrow CyA $C_{\min} \rightarrow \uparrow$ toxicity | Monitor levels. ↓ CyA dose | | Carbamazepine ⁴⁷ | Case report | CYP3A4 induction | ↓ CyA CL 50–70%
↓ CyA [] → GVHD | Monitor CyA levels. ↑ CyA dose | | Chloramphenicol ⁴⁸
Etoposide ⁴⁹ | Case report | Unknown
↓ Clearance of etoposide via
P-glycoprotein mechanism | ↑ CyA C_{\min} → ↑ toxicity
↑ Etoposide AUC 59% | Change to nonenzyme-inducing antiepileptic
Monitor CyA levels. ↓ CyA dose
CYA has been used to overcome P-glycoprotein
resistance. No action to be taken, interaction
intentional | | Fluoroquinolones (norfloxacin) ^{b 50}
Imatinib mesylate | Case report
Hypothesis | CYP3A4 inhibition
CYP3A4 inhibition | ↓ Etoposide CL 35%
↑ Etoposide $t1/2 \rightarrow >$ toxicity
↑ CyA $C_{min} \rightarrow \uparrow$ toxicity
Unknown, anticipate ↑ [] CyA | Monitor CyA levels. ↓ CyA dose (~43%)
Monitor CyA levels | | Macrolide antibiotics
Clarithromycin ^{53,54}
Erythromycin ⁵⁵ | Case reports
Case reports | CYP3A4 inhibition
CYP3A4 inhibition | ↑ CyA C_{\min} 26–33%
↑ CyA C_{\min} 4.7-fold → toxicity | Monitor CyA levels. ↓ CyA dose
Monitor CyA levels. ↓ CyA dose by 50% | | Mycophenolate mofetil (MMF) ⁵⁶ | PK studies | Attenuates enterohepatic recirculation of MPAG/MPA | \downarrow AUC of MPA
\uparrow MMF C_{\min} two-fold when CyA
discontinued | Monitor patient for side effects of MMF | | Phenytoin ⁵⁷⁻⁵⁹ | PK studies; case reports | CYP3A4 induction | \downarrow CyA C_{\min}
\downarrow CyA AUC 50% → ↑ GVHD | Monitor CyA levels. ↑ CyA dose | | uinupristin/dalfopristin (QND) ⁶⁰
ifampin ^{61–65} | Case report
Healthy volunteers | Unknown°
CYP3A4 induction | ↑ CyA C_{min} three-fold \rightarrow ↑ t ↓ CyA AUC _{IV} 28% ↓ CyA AUC _{PO} 73% ↓ F CyA 63% | oxicity Monitor CyA levels. ↓ CyA dose Avoid if possible ↑ CyA doses according to levels | | rolimus ⁶⁴ (oral liquid) | Healthy volunteers | CYP3A4 inhibition of sirolimus; | \uparrow Sirolimus $C_{\rm max}$ 116% ^d | Administer sirolimus 4h after administratio | | | | inhibition P-glycoprotein transpor | † Sirolimus AUC 230% ^d † Sirolimus C _{max} 37% ^e † Sirolimus AUC 80% ^e → Toxicity | CyA
Monitor CyA levels if necessary | | rolimus ⁶⁴ (tablets) | Healthy volunteers | CYP3A4 inhibition of Sirolimus | ↑ Sirolimus C_{\max} 512% d ↑ Sirolimus AUC 148% d ↑ Sirolimus C_{\max} 33% d ↑ Sirolimus AUC 33% d → ↑ Toxicity | Administer sirolimus 4h after administratio
CyA
Monitor CyA levels if necessary | Table 3 (Continued) | Drug | Data type | Proposed mechanism of interaction by drug | Clinical effect (potential or actual) | Recommended action | |---------------------------------|--------------|---|---|--| | Sildenafil ⁶⁵ | PK study | CYP3A4 inhibition | ↑ Sildenafil C _{max} 44%
↑ Sildenafil AUC 90% | Start sildenafil at 25 mg
May need to adjust antihypertensives if
coprescribed | | | | | ↑ t1/2 (elimination) → profound
hypotension | | | St John's wort ⁶⁶⁻⁷² | Case reports | CYP3A4 induction | \downarrow CyA $C_{\min} \rightarrow$ GVHD | Avoid | ^{[]=}concentration; ↑= increased; →= leads to; ↓= decreased; AUC= area under the curve; C_{\min} = trough concentration; CL=clearance; F= bioavailability; GVHD=graft-versus-host disease; PK=pharmacokinetic; CYP3A4=cytochrome P450 3A4 isoenzyme. *Nifedipine does not increase CyA levels and can be used safely. *Ciprofloxacin [53] and levofloxacin [53] have been studied and no clinically significant interaction exists. *PK of QND not known, thought to be due to CVP3A4 inhibition. *Pharmacokinetic changes to sirolimus when administered simultaneously with cyclosporine dose. *Pharmacokinetic changes to sirolimus when administered simultaneously with cyclosporine dose. MPA = mycophenolic acid. Table 2 Clinically relevant pharmacokinetic drug interactions with tacrolimus | Drug | Data type | Proposed mechanism of interaction
by drug | Clinical effect (potential or actual) | Recommended action | |--|-------------------------------------|---|--|--| | Azole antifungals Fluconazole ^{9,10} Itraconazole ¹¹⁻¹⁶ Voriconazole ¹⁷ | Case reports; PK studies | CYP3A4 inhibition | ↑ Tacrolimus $C_{min} \rightarrow \uparrow$ toxicity ^a
See Table 4
See Table 5 | Monitor levels. ↓ Tacrolimus dose*
Monitor levels. ↓ Tacrolimus dose
Monitor levels. ↓ Tacrolimus dose | | Calcium channel blockers
Diltiazem 18,19 | In vitro
Case report | CYP3A4 inhibition | ↑ Tacrolimus AUC 26–177%
↑ C _{min} [] tacrolimus → ↑ toxicity | Monitor levels. \downarrow Tacrolimus dose. | | Verapamil | In vitro | CYP3A4 inhibition | ↑ Exposure→toxicity | Monitor levels. ↓ Tacrolimus dose | | Chloramphenicol ²⁰ | Case report | CYP3A4 inhibition | ↑ Tacrolimus AUC 7.5-fold → toxicity | Monitor levels. ↓ Tacrolimus dose | | Imatinib mesylate ²¹ | Abstract | CYP3A4 inhibition | Unknown, anticipate ↑ [] tacrolimus | Monitor levels. | | Macrolide antibiotics
Clarithromycin ^{22,23}
Erythromycin ²⁴⁻²⁶ | Case reports In vitro; case reports | CYP3A4 inhibition | ↑ Tacrolimus C_{\min} two-fold \rightarrow ↑toxicity ↑ Tacrolimus C_{\min} six-fold \rightarrow ↑ toxicity | Monitor levels. ↓ Tacrolimus dose
Monitor levels. ↓ Tacrolimus dose | | Phenobarbital ²⁷ | In vitro; case reports | CYP3A4 induction | Tacrolimus []→GVHD | Monitor levels. ↑ Tacrolimus dose | | Phenytoin ²⁸ | Case report | CYP3A4 induction | Tacrolimus []→GVHD | Monitor levels. ↑ Tacrolimus dose | | Rifampin ²⁹⁻³¹ | Healthy volunteers | CYP3A4 induction | Tacrolimus AUC _{po} 68% | Monitor levels. ↑ Tacrolimus dose | | | , | | ↓ Tacrolimus AUC _{iv} 35%
↓ F _{PO} 51% | | | St John's wort ³² | Case report | CYP3A4 induction, ? ↑ P-
glycoprotein transporter expression | ↓ Tacrolimus []→GVHD | Monitor levels. † Tacrolimus dose | | Theophylline ³³ | Case report | CYP3A4 inhibition | ↑ Exposure→toxicity | Monitor levels. ↓ Tacrolimus dose | ^{[]=}Concentration; \uparrow =increased; \rightarrow =leads to; \downarrow =decreased; AUC=area under the curve; C_{min} =trough concentration; F=bioavailability; GVHD=graft-versus-host disease; PK=pharmacokinetic; CYP3A4=cytochrome P450 3A4 isoenzyme. *Drug interaction occurs when both agents administered orally and where fluconazole dose is >200 mg/day. Table 2. Tacrolimus (T) and Cyclosporine (C) Pharmacokinetic Drug-Drug Interactions | Drug | Mechanism | Data Type | Effect | Recommen dation | |------------------------------------|--|--|---|---| | CYP inhibitors | | | | | | Amiodarone | CYP3A4 inhibition | CR; no clinical effect | Increased T/C levels at
3 days to 4 weeks | If used concurrently, monitor T/C levels and adjust dosage; need to monitor levels ≥ 4 weeks after adding amiodarone [53]. | | Azoles | CYP3A4 and P-gp inhibition | PK, CR, HSCT; renal | Increased T/C levels | Adjust dosage according to Table 5. | | Estrogens | CYP3A4 inhibition | CR; no clinical effect | Increased T/C levels | If used concurrently, monitor T/C levels and adjust dosage [57]. | | Macrolides (not azithromycin) | CYP3A4 inhibition | CR; acute renal failure | Increased T/C levels | Avoid concurrent use; if used concurrently, monitor T/C levels [59 | | Metronidazole | CYP3A4 inhibition | CR; no clinical effect | Increased T/C levels | If used concurrently, monitor T/C levels and adjust dosage [36]. | | Non-dihydropyridine CCBs | CYP3A4 inhibition | PK, CR; neurotoxicity | Incressed T/C levels | Consider a 20% T/C dosage reduction on starting CCB; monitor T/C levels [56]. | | Proton pump inhibitors | CYP3A4/5 and CYP2C19 inhibition | PK, renal/liver; CR, no clinical
effect | Increased Texposure | If used concurrently, monitor T level and adjust dosage [38]. | | lmatini b/T KIs | CYP3A4 inhibition
(nilotinib-P-gp inhibition) | Animal studies | Increased T/C levels | Monitor T/C levels [43]. | | Aprepitant | CYP3A4 inhibition | HSCT; no clinical effect | Increased T/C levels | Monitor T/C levels [45]. | | Statins | CYP3A4 inhibition; OATIBI metabolism | Randomized, renal, healthy, CR;
rhabdomyolysis with C | Increased statin AUC three- to 20-fold
(depending on statin used);
less interaction with T [47] | If used concurrently, consider lower initial and maintenance dose
of statins; monitor for rhabdomyolysis especially with C use
(stop statin immediately if it occurs) [53]. | | CYP inducers | | | | | | Phenytoin
Competition at CYP3 A | CYP3A4 induction | CR; no clinical effect | Decreased T/C levels | If used concurrently, monitor T/C level and adjust dosage [58]. | | Corticosteroids | CYP3A4/P-gp induction | CR/PK studies | Decreased T/C levels | If used concurrently, monitor T/C level during and after steroid use [46]. | | | CYP3A4 substrate | CR; possibly increased
neurotoxicity | Increased T/C steroid levels | If used concurrently, monitor T/C level; monitor for steroid
toxicity [61]. | | Dihydropyridine CCBs | CYP3A4 substrate; P-gp inhibitor | PK, CR; no clinical effect | Increased T/C levels (nifedipine only T) | If used concurrently, monitor T/C level [66]. | | Tacrolimus and cyclosporine | Competition at CYP3A4 | Based on metabolism and
additive toxicity | Decreased C metabolism [48] | Discontinue T/C 24 hours before initiation of the other [42]. | | Sirolimus | CYP3A4 competition | PK; renal, volunteers | Decreased T/C levels; increased
sirolimus AUC with C | If used concurrently, monitor T level and adjust dosage, sirolimus
should be administered 4 hours after oral C [51,60]. | | Nafcillin | CYP3A4 competition | CR; acute renal failure | Decreased C level | Avoid concurrent use (possible interference with assay) [63]. | | Other Interactions | | | | | | MMF | Inhibition of enterohepatic recirculation | PK; liver/renal | Decreased MMF level | Use caution if administering together; MMF dosage may need
adjustment [49,62]. | | Caspofungin | Unknown | PK; healthy, transplantation,
increased liver function test
values w/C | Increased T level; Increased AUC of
casp ofungin with C | T is favored over C for coadministration with caspofungin; routine monitoring of T level is suggested [52,64]. | | Octreotide | Decreased C absorption | CR; no clinical effect | Decressed C effectiveness | If used together, monitor C level; a C dosage increase of 50% at the
start of octreotide is suggested [67]. | PK indicates pharmacokinetic studies; CR, case reports; CCBs, calcium channel blockers. ## **Appendix 2** Table 3. Sirolimus Drug-Drug Interactions | Drug | Mechanism | Data Type | Effect | Recommendation | |--|----------------------------|---|--------------------------------|---| | Inhibitors | | | | | | Amiodarone | CYP3A4 inhibition | CR; no clinical effect | Increased sirolimus level | If used concurrently, monitor sirolimus level and adjust dosage [76]. | | Azoles | CYP3A4 and P-gp inhibition | PK, CR, HSCT; volunteers | Increased sirolimus level | Adjust according to Table 5. | | Corticosteroids | CYP3A4 inhibition | PK | Increased levels of both drugs | If used concurrently, monitor sirolimus level;
monitor for signs of steroid side effects [71]. | | Cyclosporine | CYP3A4 inhibition | PK; renal, volunteers | Increased sirolimus AUC | Sirolimus should be administered 4 hours after oral cyclosporine [60]. | | Macrolide antibiotics | CYP3A4 inhibition (potent) | CR; acute renal failure | Increased sirolimus level | Coadministration is not recommended [72,75]. | | Micafungin | Unknown | PK; volunteers | Increased sirolimus level | If used concurrently, monitor sirolimus levels and adjust dose [122]. | | Non-dihydropyridine
diltiazem/verapamil | CYP3A4 inhibition | PK; volunteers | Increased sirolimus level | If used concurrently, monitor sirolimus level and adjust dosage [73]. | | Inducers | | | | | | Phenytoin | CYP3A4 induction | CR; no clinical effect | Decreased sirolimus level | If used concurrently, monitor sirolimus level and adjust dosage [74]. | | Competition at
CYP3A | | | | | | Tacrolimus | CYP3A4 competition | Prospective/CR renal;
no clinical effect | Decreased tacrolimus level | If used concurrently, monitor tacrolimus level and adjust dosage [51]. | PK indicates pharmacokinetic studies; CR, case reports. ## **Appendix 3** Table 5. Pharmacokinetic Effect of Azole Antifungals: Changes in AUC of Tacrolimus, Cyclosporine, and Sirolimus | | Tacrolimus | | Cyclosporine | | Sirolimus | | |--|-------------------|------------------------------|-------------------|-----------------------------------|---|--------------------------------| | Azole | AUC | Reduction in Tacrolimus Dose | AUC | Reduction in
Cyclosporine Dose | AUC | Reduction in
Sirolimus Dose | | Fluconazole oral 400 mg daily [30,31,33] | 310% increase | 50% | 85% increase | 40% | ^a 3.5-fold increased in C _{sirolimus} with 100-mg fluconazole | 33% | | Fluconazole i.v. 400 mg daily [5,35] | 16% increase [35] | 40% | 21% increase [35] | 25% | | 25% | | Voriconazole oral or i.v. 200 mg
twice daily [32,34,94] | 300% increase | 66% | 70% increase | 50% | 1,000% increase | 90% | | Posaconazole oral 200 three
times/day [68,77] | 350% increase | 75% | 33% increase | 25% | 8.9-fold increase | 50% | ^aMonitoring of blood levels of calcineurin inhibitors is recommended when the route of fluconazole administration is switched from i.v. to oral [5]. AUC indicates area under the curve. Table 6. Other Azole Drug Interactions | Drug | Antifungal | Data Type | Effect | Recommendation | |-----------------------------|---------------|--|---|---| | Busulfan | Flz | Nonrandomized SCT | Busulfan AUC increased | No action needed [11]. | | | ltz | Nonrandomized SCT | Busulfan clearance decreased | Avoid combination [11]. | | | Vrz | Theoretical (based on
metabolism; no studies) | Busulfan clearance decreased | Consider starting Vrz after day I [11,13]. | | Calcium channel
blockers | ltz | Randomized healthy volunteers | Felodipine AUC increased | Decrease felodipine dosage [108]. | | | Flz, Vrz, Psz | In vitro | Felodipine AUC increased | Monitor blood pressure. | | Dexamethasone | ltz | Randomized healthy volunteers | Dexamethas one AUC increased | Monitor for toxicity [83]. | | Estrogens | Vrz | Nonrandomized healthy volunteers | Vrz and estrogen AUC increased | Monitor for Vrz toxidty [111]. | | | Flz | Randomized healthy volunteers | Estrogen AUC increased | No action needed [104]. | | FentanyVoxycodone | Flz, Vrz | Randomized healthy volunteers | Fentanyl AUC increased | Monitor for sedation [100]. | | Glipizide/glimepiride | Flz | Randomized healthy volunteers | Glimepiride AUC increased | Decrease glimepiride dose [103]. | | Methadone | Vrz | Randomized patients taking
methadone | Methadone AUC increased | Monitor for methadone toxicity, QT-interva
prolongation [110]. | | | Flz | Randomized patients taking
methadone | Methadone AUC increased | Monitor for methadone toxicity, QT-interva
prolongation [98]. | | Phenytoin | Psz | Nonrandomized volunteers | Psz AUC decreased | Avoid combination [114]. | | | Vrz | Randomized volunteers | Vrz AUC decreased; phenytoin
AUC increased | Increase Vrz maintenance dose to 400 mg twice daily [109]. | | | Flz | Randomized volunteers | Phenytoin AUC increased | Monitor for phenytoin toxicity [99]. | | PPIs | ltz | Nonrandomized volunteers | Itz and omeprazole AUC increased | Do not use Itz capsules; solution okay [107] | | | Vrz/Flz | Randomized/nonrandomized volunteers | Both AUC increased | No clinically relevant effect; start with
low-dose PPI [102]. | | Statins | Itz/Psz | Randomized volunteers | Statin AUC increased | Avoid combination [115]. | | | Flz | Randomized volunteers | Statin AUC increased | Start low-dose statin [101]. | | | Vrz | In vitro | Statin AUC increased | Monitor for statin toxicity [112]. | | TKIs | Vrz/Psz | In vitro | TKI metabolism decreased | Avoid use with dasatinib/nilotinib, which also increases the risk of QT-interval prolongation; decrease dose if necessary. If using with imatinib, consider using lowe dose and closely follow for toxicity [43]. | Flz indicates fluconazole; Itz, itraconazole; Psz, posaconazole; Vrz, voriconazole; PK, pharmacokinetic studies; CR, case reports.