# Antithymocyte Globulin (ATG) Dosing and Controversies

Kelly M. Gregory, PharmD, BCPS, BCOP Clinical Pharmacy Specialist, BMT Virginia Commonwealth University Health System Richmond, Virginia

## **Disclosure**

• I have no actual or potential conflicts of interest

# **Objectives**

- Describe antithymocyte globulin (ATG) dosing regimens and strategies in hematopoietic cell transplantation (HCT).
- Evaluate the role of ATG in HCT based on stem cell source and type of preparative regimen.
- Outline strategies for the management of positive ATG test dose reactions and apply to a patient receiving horse ATG for aplastic anemia.

# **Antithymocyte Globulin**

- Polyclonal antibodies purified from horse or rabbit serum
- Primary mechanism: *in vivo* depletion of T-lymphocytes in the blood, spleen and lymph nodes
  - Native recipient T cells
  - Donor infused T cells
- Effects on B cells, dendritic cells, NK cells
- Tolerance induction
  - Expansion and generation of T regulatory cells

Leukemia. 2007;21:1387-94

# Relapse Infectious complications Lymphoproliferative disorders (PTLD) Graft versus host disease

# Antithymocyte globulin

- Product preparation, dose, and schedule impact the extent and specificity of T-cell depletion and immune reconstitution
- Different preparations should be regarded as unique drugs

| ATG            | Manufacturer        | Host<br>Animal | Immunized<br>With         | Comments                            |
|----------------|---------------------|----------------|---------------------------|-------------------------------------|
| Atgam          | Pharmacia<br>Upjohn | horse          | human<br>thymocytes       | FDA approved in US                  |
| Thymoglobulin  | Genzyme             | rabbit         | human<br>thymocytes       | FDA approved in US                  |
| Lymphoglobulin | Genzyme             | horse          | human<br>thymocytes       | No longer<br>available              |
| ATG-Fresenius  | Fresenius           | rabbit         | human jurkat<br>cell line | Not available/FDA<br>approved in US |

# Why are we still asking this question?

- Differences in ATG preparation, dose, schedule
   Cannot extrapolate results from one agent to another
- Very few adequately powered, prospective, randomized studies
- MANY small, single center, retrospective, nonrandomized trials with heterogeneous patient populations
- Evolving trends in HCT
  - Increase in reduced intensity conditioning, cord blood transplant, haploidentical transplant
  - Older patient demographic

What is the ideal dose and timing of ATG?

# ATG Pharmacokinetics Rabbit IgG Levels, n = 61 (mean ± 95% CI) Total ATG administered in 2mg/kg doses, last dose on day -1 Wide interpatient variation in IgG levels Lower risk of grade 2-4 aGVHD at rATG levels > 70mcg/mL on day 0 vs levels < 70mcg/mL (11% vs 48%, p<0.01)

# 3

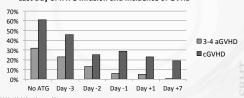
# rATG Dosing

- Retrospective, dose-finding study (n = 162)
- Hematologic malignancies, unrelated donors
- Conditioning: Cy-TBI or BuCy
- GVHD prophylaxis: cyclosporine + methotrexate
- Comparator groups: rATG (Thymoglobulin)
  - 4mg/kg (n=51), 6mg/kg (n=37), 8mg/kg (n=19), 10mg/kg (n=55)
  - Dosing: 2mg/kg/day, last administration = day -1

Transplantation. 2004;78:122-27.

# rATG Dosing

| Event                               | HR (95% CI)      | P-value |
|-------------------------------------|------------------|---------|
| 2-4 aGVHD<br>ATG 4mg/kg             | 2.7 (1.2-5.9)    | 0.015   |
| 3-4 aGVHD<br>ATG 4mg/kg             | 4.1 (1.1-15)     | 0.03    |
| Death from infection<br>ATG 10mg/kg | Not reported     | 0.09    |
| TRM<br>ATG 6-8 mg/kg                | 0.35 (0.13-0.94) | 0.03    |
| Death<br>ATG 6-8 mg/kg              | 0.45 (0.22-0.9)  | 0.03    |


- Multivariate analysis
- Intermediate dose range favored to decrease GVHD, TRM and death

Transplantation. 2004;78:122-27.

# rATG Timing

- Timing of rATG (Thymoglobulin) in unrelated/mismatched related donor HCT (n = 257)
- Total dose of rATG not reported

### Last Day of rATG Infusion and Incidence of GVHD



# **ATG Dosing and Timing: Conclusions**

- Large interpatient variability in ATG PK parameters
  - Long half-life
  - Present in serum for up to 5 weeks
- ATG levels pre-HCT correlate with risk of developing GVHD
  - Research application for individualized dosing
- Dose-response relationship of ATG's effect on GVHD and infection, favoring an intermediate dose range
- Timing of ATG is significant
  - Lower doses may be given closer to day zero, higher doses may be given early in conditioning

# Should ATG be used in myeloablative conditioning?

# **Audience Poll**

At your institution, ATG is used as part of the standard preparative regimen in which patient population(s):

- A. Both myeloablative related and unrelated donors
- B. Only myeloablative related donors
- C. Only myeloablative unrelated donors
- D. We do not use ATG as a standard component of the preparative regimen
- E. Attending preference

### **ATG in Unrelated Donors: GITMO Study** • Prospective, randomized, multicenter (1995-2000) ➤ rATG 7.5mg/kg, divided, d -4 to -3 (n=25) Trial 1 60% Early Phase CyTBI CSA+MTX No ATG (n=29) Jnrelated Dono rATG 15mg/kg, divided, d -5 to -2 (n=27) Bone Marrow Source 30% Early Phas No ATG (n=27) rATG 7.5mg/kg rATG 15mg/kg 3-4 aGVHD 9 (36%) 12 (41%) 14 (50%) 3 (11%) TRM 39% 43% 0.7 62% 49% 0.9 12% 10% 0.6 18% 36% Relapse 0.8 os 155% 0.8 43% 32% 0.8

# **ATG in Unrelated Donors: GITMO Study**

Cy: cyclophosphamide, TBI: total body irradiation, CSA: cyclosporine, MTX: methotrexate, rATG: rabbit ATG (Thy TRM: treatment related mortality, OS: overall survival

• Long term follow-up reported in 2006

od. 2001;98:2942-2947 / Biol Blood Marrow Transplant. 2006;12:560-65

- Patients surviving >100 days included (n=75)
- Outcomes at a median follow-up of 5.7 years

|                          | No ATG (n = 37) | rATG (n = 38) | P-value |
|--------------------------|-----------------|---------------|---------|
| cGVHD                    | 60%             | 37%           | 0.05    |
| Extensive cGVHD          | 41%             | 15%           | 0.01    |
| Chronic Lung Dysfunction | 51%             | 19%           | <0.01   |
| Karnofsky ≥ 90%          | 57%             | 89%           | 0.03    |

- No significant differences in TRM, OS, relapse
- Limitations: Study performed in the 1990s, 2 different ATG doses used, possibility of MMUD

Blood. 2001;98:2942-2947 / Biol Blood Marrow Transplant. 2006;12:560-65

# • Cumulative incidence of chronic lung dysfunction • Cumulative incidence of chronic lung dysfunction • ATG n=35 51% • ATG n=32 19% days from transplant

# **ATG in Unrelated Donors: ATG-F Study**

- Prospective, randomized, multicenter (2003-2007)
- Treatment arms:
  - CSA + MTX (n = 98)
  - CSA + MTX + ATG-F 60mg/kg, divided, d -3 to -1 (n = 103)
- Hematologic malignancies
- Majority PBSC source
- 56% advanced disease in no ATG vs. 38% in ATG-F arm

Lancet Oncol. 2009;10:855-64

# ATG in Unrelated Donors: ATG-F Study

|                                                | No ATG (n = 37) | ATG-F (n = 38) | HR (95% CI)     | P-value |
|------------------------------------------------|-----------------|----------------|-----------------|---------|
| 3-4 aGVHD                                      | 24.5%           | 12%            | 0.5 (0.25-1.01) | 0.054   |
| cGVHD @ 2y                                     | 59%             | 31%            | 0.3 (0.21-0.55) | <0.01   |
| Extensive cGVHD @                              | 2y 43%          | 12%            | 0.2 (0.11-0.43) | <0.01   |
| Extensive cGVHD @                              | 3y 45%          | 12%            | 0.2 (0.1-0.39)  | <0.01   |
| Survival free of immunosuppressing therapy @3y | ve 17%          | 53%            | not reported    | <0.01   |

• No significant differences in TRM, OS, relapse

Lancet Oncol. 2009;10:855-64 / Blood. 2011;117:6375-82

# **ATG in Matched Related Donors**

• No recent, prospective, multicenter, randomized trials

|                           | Disease Status                                | Source       | ATG                               | GVHD                                                              | Outcomes                                                                                                                   |
|---------------------------|-----------------------------------------------|--------------|-----------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Russel<br>2007<br>n = 108 | Hematologic<br>malignancies<br>High risk: 26% | PBSC         | No ATG vs<br>rATG 4.5mg/kg        | aGHVD: NS<br>cGVHD: 96 vs 55%<br>(p <0.01)                        | NRM @ 100d: 17 vs 4%<br>(p <0.01), @ 4y: 34 vs 9%<br>(p <0.02)<br>Relapse: 22 vs 43%<br>(p 0.05)<br>OS: 50 vs 66% (p 0.05) |
| Kroger<br>2002<br>n = 102 | Good risk<br>myeloid<br>leukemias             | Mostly<br>BM | No ATG vs<br>ATG-F<br>30-120mg/kg | 3-4 aGVHD: 32 vs 7%<br>(p <0.01)<br>cGVHD: 67 vs 36%<br>(p <0.01) | NRM, relapse, OS: NS                                                                                                       |

PBSC: peripheral blood stem cell, rATG: rabbit ATG (Thymoglobulin), NS: not significant, NRM: non-relapse mortality, OS: overa survival, BM: bone marrow, ATG-F: ATG-Fresenius

Biol Blood Marrow Transplant.2007;13:299-306 / Bone Marrow Transplant. 2002;29:683-

# ATG and Quality of Life

- Prospective, open label, single-center trial (n = 96)
  - Cytarabine, cyclophosphamide, busulfan, simustime +/-ATG-F 16mg/kg, divided, days -4 to -1
  - GVHD prophylaxis: CSA+MTX
  - Peripheral blood source, 77% sibling donor
- · Validated QoL instruments
  - Karnofsky Performance Scale (KPS)
  - European Organization for Research and Treatment Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30)

Biol Blood Marrow Transplant. 2012;18:593-99

# **ATG and Quality of Life**

- HCT Outcomes
  - ATG-F group had significantly lower rates of aGVHD (overall and grade 3-4) and cGVHD, increased rates of infection
  - No difference between groups for relapse or survival
- QoL Outcomes (final assessment 1 year post HCT)
  - KPS: 70% of patients in ATG-F group vs 29% in no ATG group had KPS scores ≥ 80 (carry on normal activity, work)
  - EORTC QLQ-C30: Statistically significant increased scores in global QoL and decreased fatigue in ATG-F group

Biol Blood Marrow Transplant. 2012;18:593-99

# **ATG in Myeloablative HCT: Conclusions**

- ATG reduces chronic GVHD
- Reduction of GVHD does not translate into an increase in relapse or a survival advantage
  - Limited data in high risk disease patients
  - Would the reduction in cGVHD translate into a survival advantage long term?
- Quality of life may be improved in patients receiving ATG due to reduced GVHD
- Outcomes with ATG related to source of stem cells (bone marrow vs. peripheral blood) is largely untested

| , |  |      |  |
|---|--|------|--|
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
| , |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  | <br> |  |
| , |  |      |  |
|   |  |      |  |

# **Audience Response Question #1**

In myeloablative HCT, the use of ATG has demonstrated <u>consistent</u> benefits in:

- A. Reduction of acute GVHD
- B. Reduction of chronic GVHD
- C. Reduction of treatment related mortality
- D. Improved overall survival
- E. All of the above

Should ATG be used in reduced intensity conditioning?

# **Reduced Intensity Conditioning**

- Reduction in early transplant related mortality allowing patients who are otherwise ineligible for myeloablative conditioning to undergo HCT
- Increase in the use of RIC over the last decade
- Outcomes rely on the integrity of a graft-versustumor effect
- Immune manipulations that might weaken alloimmunity may compromise transplant outcomes

### 

ood Marrow Transplant. 2009;15:1422-30 / Cancer. 2013;119:986-92 / Biol Blood Marrow Transplant. 2011;17:1698-1703

# **RIC: CIBMTR Study**

- Retrospective registry analysis of adult patients with hematologic malignancies who received RIC HCT between 2000 – 2007
- · Treatment Groups
  - T cell-replete (n = 879)
  - ATG (n = 584)
  - Alemtuzumab (n = 213)
- Outcomes: aGVHD, cGVHD, relapse, non-relapse mortality, disease free survival, and overall survival

Blood. 2011;117:6963-70

|                           | ATG, no. (%) | T cell-replete, no. (%) | P-value |
|---------------------------|--------------|-------------------------|---------|
| No. of patients           | 584          | 879                     |         |
| ATG preparation           |              |                         |         |
| rATG (median 7 mg/kg)     | 405 (70)     |                         |         |
| hATG (median 40 mg/kg)    | 160 (27)     |                         |         |
| Not reported              | 19 (3)       |                         |         |
| Disease status before HCT |              |                         |         |
| Early                     | 193 (33)     | 271 (31)                | NS      |
| Advanced                  | 391 (67)     | 608 (69)                |         |
| Conditioning regimen      |              |                         |         |
| BuFlu                     | 375 (54)     | 300 (34)                | < 0.001 |
| MelFlu                    | 132 (23)     | 310 (35)                | <0.001  |
| CyFlu                     | 77 (13)      | 269 (31)                |         |
| Graft type                |              |                         |         |
| Bone marrow               | 84 (14)      | 83 (9)                  | 0.001   |
| Peripheral blood          | 500 (86)     | 796 (91)                |         |
| Donor type                |              |                         |         |
| HLA-matched sibling       | 228 (39)     | 517 (59)                | < 0.001 |
| Unrelated, 8/8            | 251 (43)     | 278 (32)                | <0.001  |
| Unrelated, 7/8            | 105 (18)     | 84 (10)                 |         |

# **CIBMTR Study: Multivariate Analysis**

| Outcome               | ATG | T cell-replete | HR (95% CI)      | P-value |
|-----------------------|-----|----------------|------------------|---------|
| Grade 2-4 aGVHD       | 38% | 40%            | 0.88 (0.74-1.04) | 0.12    |
| Grade 3-4 aGVHD       | 21% | 22%            | 0.86 (0.69-1.08) | 0.19    |
| cGVHD                 | 40% | 52%            | 0.69 (0.59-0.81) | <0.01   |
| Relapse               | 49% | 38%            | 1.53 (1.29-1.81) | <0.01   |
| Non-relapse mortality | 26% | 23%            | 1.34 (1.07-1.67) | 0.01    |
| Disease free survival | 25% | 39%            | Not reported     | <0.01   |
| Overall survival      | 38% | 46%            | Not reported     | <0.01   |

- EBV-PTLD: 2 pts (T cell-replete) vs. 12 pts (ATG, 4 deaths)
- ATG was associated with inferior DFS regardless of preparation and dose administered (timing not reported)

Blood. 2011;117:6963-70

# **CIBMTR Study Conclusions**

- Limitations
  - Non-randomized trial design
  - Heterogeneous ATG source, dose, schedule
  - Limited information on infectious complications
  - Limited data on immune reconstitution and DLI
- Conclusions
  - ATG is associated with a lower risk of cGVHD but an increased risk of relapse and inferior OS in RIC HCT

Blood. 2011;117:6963-70

# ATG in Reduced Intensity Conditioning: Conclusions

- ATG may reduce GVHD in patients with hematologic malignancies undergoing RIC for allo-HCT
- Low doses (≤ 2.5mg/kg) do not have adequate GVHD lowering and higher doses (> 7mg/kg) are associated with an increased risk of infection, relapse, and potentially mortality
- RCTs comparing intermediate-dose ATG vs. T cellreplete regimens in RIC HCT are needed
- Minimize use of ATG in RIC HCT to patients at higher risk of GVHD and those with lower risk of relapse

| • |  |  |  |
|---|--|--|--|
| • |  |  |  |
| - |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
| - |  |  |  |
| • |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| • |  |  |  |
| • |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

# Should ATG be used in umbilical cord blood transplant?

# **Umbilical Cord Blood Transplant**

- UCBT has expanded the donor pool for patients who do not have an HLA-matched sibling or unrelated donor
- Less stringent HLA matching criteria resulting in similar outcomes to matched unrelated donor HCT
- Outcomes are limited by increased treatment related mortality
  - Graft versus host disease
  - Engraftment
  - Opportunistic infections
  - Immune reconstitution

How does ATG alter these endpoints?

# **Risk factors for GVHD after UCBT**

- University of Minnesota database of 265 patients (>10 years) undergoing single or double UCBT (1994-2006)
- Risk of grades 2-4 aGVHD: Multiple regression analysis

| Risk Factor                       | RR of aGVHD (95% CI) | P-value |
|-----------------------------------|----------------------|---------|
| Single UCBT<br>Double UCBT        | 1 2                  | 0.01    |
| Myeloablative<br>Nonmyeloablative | 1<br>1.7             | 0.01    |
| No ATG<br>ATG                     | 1<br>0.5             | 0.02    |

Use of ATG had no significant impact on overall treatment related mortality

Blood. 2009;113:2410-1

# **Double UCBT without ATG: MSKCC Study**

- Enrolled 72 patients receiving double UCBT for hematologic malignancies (2005-2009)
  - Myeloablative (n = 34)
  - Reduced intensity myeloablative (n = 18)
  - Nonmyeloablative (n = 20)
  - GVHD Prophylaxis: Calcineurin inhibitor + MMF
- Sustained donor engraftment: 94%
- Cumulative incidence of grade 2-4 aGVHD was 43%
  - Grade 2: 12 (39%)
  - Grade 3: 15 (48%)
- Grade 4: 4 (13%)

Biol Blood Marrow Transplant. 2011;17:1460-67

### 

# **UCBT: Early, Late, or no ATG**

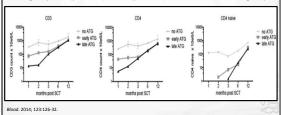
- Retrospective analysis at 2 pediatric HCT centers
- · Myeloablative and RIC regimens for single UCBT
- Treatment Groups (rATG Thymoglobulin):
  - Late rATG + CSA/pred (10mg/kg, divided, d -5 to -1, n = 48)
  - Early rATG + CSA/pred (10mg/kg, divided, d -9 to day -5, n = 33)
  - No ATG + CSA/MMF (n= 46)

nt. 2011:17:1460-67

 Immune reconstitution (CD3+, CD4+ and CD4+naive cells) measured at 1, 2, 3, 6, and 12 months post-UCBT

Blood. 2014; 123:126-32

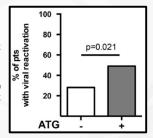
# **UCBT: Early, Late, or no ATG**


| Outcome    | No ATG | Early rATG | Late rATG | P-value<br>(No ATG vs. Early rATG) | P-value<br>(Early vs. Late rATG) |
|------------|--------|------------|-----------|------------------------------------|----------------------------------|
| aGrade 2-4 | 60%    | 44%        | 14%       | <0.01                              | <0.01                            |
| aGrade 3-4 | 31%    | 18%        | 5%        | 0.02                               | 0.15                             |
| cGVHD      | 12%    | 11%        | 28%       | NS                                 | NS                               |

- Increased aGVHD in the no ATG and early ATG groups
- · No difference in engraftment, NRM, EFS, relapse, OS

Blood. 2014; 123:126-32.

# UCBT: Early, Late, or no ATG


- Increased CD3+, CD4+ and CD4+ naïve Tcells in the no ATG group at all time points vs. ATG groups (p = <0.01)</li>
- Increased CD3+, CD4+ and CD4+ naïve Tcells in the early ATG group at 1 (p = 0.02) and 2 (p = 0.04) months vs. late ATG group



# **UCBT: Early, Late, or no ATG**

Viral reactivation in the no ATG group vs. ATG groups

- Decreased overall viral reactivation in patients not receiving ATG (p 0.02)
- Decreased death due to viral reactivation in patients not receiving ATG (p <0.01)</li>



Blood. 2014; 123:126-32.

## **UCBT RIC: EBMT Study**

- Retrospective registry analysis of adult patients with hematologic malignancies who received single or double UCBT (2004 - 2011)
- RIC with TBI-fludarabine-cyclophosphamide
- CSA + MMF GVHD prophylaxis in 91% of patients
- · Treatment Groups
  - rATG (Thymoglobulin) at a median dose of 8mg/kg or ATG-F (ATG-Fresenius) at a median dose of 20mg/kg (n = 82)
  - No ATG (n = 579)

Blood. 2013; 122(21): Abstract 412

# **UCBT RIC: EBMT Study**

- · Multivariate analysis
- Type and dose of ATG not associated with outcomes

|                        | No ATG       | rATG/ATG-F | HR (95% CI)      | P-value |   |
|------------------------|--------------|------------|------------------|---------|---|
| aGVHD                  | 41%          | 15%        | 0.31 (0.17-0.55) | <0.01   |   |
| cGVHD @ 3y             | 29%          | 20%        | NS               | 0.07*   |   |
| Relapse @ 3y           | 34%          | 29%        | NS               | 0.6*    |   |
| NRM @ 3y               | 26%          | 46%        | 1.68 (1.16-2.43) | <0.01   |   |
| OS @ 3y                | 48%          | 30%        | 1.69 (1.19-2.4)  | <0.01   |   |
| *B values from univari | ato analysis |            |                  |         | Ξ |

\*P-values from univariate analysis
rATG: Rabbit ATG Thymoglobulin, ATG-F: ATG Fresenius, NRM: non-relapse mortality, OS: overall surviv

 72% of deaths in ATG group due to infection vs 39% in the no ATG group (p < 0.01)</li>

Blood. 2013; 122(21): Abstract 412

# ATG in Umbilical Cord Blood Transplant: Conclusions

- Removal of ATG results in higher aGVHD which may partially negate beneficial effects of a reduction in infections
  - Patients should be closely monitored for late infections
- Increase in infection with ATG impacts NRM more significantly than an increase in GVHD without ATG, resulting in inferior OS with the use of ATG following TBI-Flu-Cy conditioning
- RCTs of ATG use in UCBT are needed

| • |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

# **Audience Response Question #2**

Retrospective registry data suggests an increased risk of relapse and inferior overall survival when ATG is used in this setting:

- A. Myeloablative conditioning with an unrelated donor
- B. Myeloablative conditioning with a related donor
- C. Reduced intensity conditioning
- D. Umbilical cord blood transplant

# **Audience Response Question #3**

Retrospective registry data suggests an increased risk of infection and inferior overall survival when ATG is used in this setting:

- A. Myeloablative conditioning with an unrelated donor
- B. Myeloablative conditioning with a related donor
- C. Reduced intensity conditioning
- D. Umbilical cord blood transplant

How should ATG hypersensitivity be managed in immunosuppressive therapy for aplastic anemia?

| 4   | _ |
|-----|---|
| - 1 | r |

### **Patient Case**

AP is a 21 yom with severe aplastic anemia (SAA). He does not have a sibling match for HCT and is admitted for immunosuppressive therapy (IST) with horse ATG and cyclosporine (CSA). He received horse ATG 5mcg (0.1mL of a 1:1000 dilution) intradermal as a test dose and immediately developed a 15mm wheal and flare hypersensitivity reaction with wheezing and complaints of shortness of breath.

### **Audience Poll**

How would you handle the results of AP's horse ATG skin test?

- A. Switch to rabbit ATG
- B. Proceed with horse ATG
- C. Not applicable We do not perform ATG skin tests at my institution
- D. Attending preference
- E. I don't know

# ASBMT Listserve Question Results Management of ATG Skin Tests in AA (n = 17) 7 6 5 4 3 2 1 0 Switch to rATG Proceed with hATG No Test Dose Attending Preference ASBMT Pharmacy Google Listserve Commmunication. June 2013.

# Treatment Algorithm for SAA SAA Diagnosed SAA Diagnosed SAO Diagnosed Diagnosed SAO Diagnosed SAO Diagnosed Diagnosed Diagnosed SAO Diagnosed Dia

# Horse vs. Rabbit ATG in AA: NIH Study

- Randomized, prospective trial of 120 patients with SAA conducted between 2005 – 2010 at the NIH
  - hATG 40mg/kg/day IV x 4 days + CSA
  - rATG 3.5mg/kg/day IV x 5 days + CSA

| Outcome       | hATG (n = 60) | rATG (n = 60) | P value |
|---------------|---------------|---------------|---------|
| R at 3 months | 37 (62%)      | 20 (33%)      | 0.002   |
| R at 6 months | 41 (68%)      | 22 (37%)      | <0.001  |
| OS at 3 years | 96%           | 76%           | 0.04    |

N Engl J Med. 2011;365:430-8

# Horse vs. Rabbit ATG in AA: Conclusions

- Horse ATG + CSA is associated with superior HR and OS versus rabbit ATG + CSA for first-line IST in SAA
- British Committee for Standards in Haematology AA Writing Committee/European Group for Blood and Marrow Transplantation SAA Working Party
  - Urgent addendum to the 2009 AA guidelines
  - Horse ATG (ATGAM) is recommended as first line IST

N Engl J Med. 2011;365:430-8 / Letter from the BCSH AAWC. 2011. Available at: bcshguidelines.cor

| 1 | ( | J |
|---|---|---|
|   | • | ۰ |
|   |   |   |

# Horse ATG (ATGAM®)

- PI recommends intradermal injection of 0.1mL of a 1:1,000 dilution observed for 1 hour prior to infusion
  - ≥ 10mm local reaction with a wheal and/or erythema is considered a positive test
  - False negatives and positives may occur
- · Positive skin test result
  - Weigh risk and benefit, consider alternative therapies
- Systemic reactions (rash, tachycardia, hypotension, dyspnea) or anaphylaxis precludes administration

### Should we follow these recommendations?

Atgam PI. Kalamazoo, MI: Pharmacia; 2005

### **Horse ATG Desensitization** Case **Desensitization Protocol** Outcome **Supportive Care**: ICU transfer, pre-medication started 24h prior to desensitization Bielory (1988) 6yof, AA 8mm wheal Treatment: 15mg/kg IV over 24h daily x 10 doses Supportive Care: ICU transfer, premedications Completed full dose w/ rate reductions, PRN H<sub>1</sub>R antagonist Hall (2006) **Desensitization:** Increasing concentrations and rates, IV administration q 10min 4yom, SAA 14mm wheal Treatment: 40mg/kg IV over 10h daily x 4 doses Ferdman (2004) Supportive Care: ICU transfer, premedications Completed full dose, PRN H<sub>1</sub>R antagonist 17yom, AA 20mm wheal, Treatment: 40mg/kg IV over 24h daily x 4 doses hypotension JAMA. 1988;260:3164-67 / Am J Health Syst Pharm. 2006;63:1633-6 / Transplantation. 2004;77:321-23

# Managing ATG Hypersensitivity in IST for Aplastic Anemia: Conclusions

- Changing ATG formulations from horse to rabbit should not be used as a strategy to manage positive skin tests
- Consider holding B-blockers before ATG to avoid suppressing physiologic compensatory responses to anaphylaxis
- Skin testing may identify patients who would benefit from hATG desensitization, more aggressive premedications and a higher acuity of care
- Hypersensitivity reactions may develop in patients with negative skin tests

Ann Allergy Asthma Immunol. 2000;85:311-16 / Atgam Pl. Kalamazoo, Ml: Pharmacia; 2005 / Blood. 2012;120:1185-

| 1 |   | • | 7 |
|---|---|---|---|
|   |   | • | - |
| _ | _ |   | , |

# What have we learned after 30 years of controversy?

- The use of ATG in HCT preparative regimens should be individualized based on stem cell source, preparative regimen intensity, primary disease, and ATG preparation, dose and schedule
- · Large, randomized controlled trials are needed
- Horse ATG is the preferred ATG preparation for immunosuppressive therapy in aplastic anemia
- Changing ATG formulations from horse to rabbit should not be used as a strategy to manage positive skin tests

# Antithymocyte Globulin (ATG) Dosing and Controversies

Kelly M. Gregory, PharmD, BCPS, BCOP Clinical Pharmacy Specialist, BMT Virginia Commonwealth University Health System Richmond, Virginia

| _ |  |  |  |  |
|---|--|--|--|--|
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| _ |  |  |  |  |
| _ |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| - |  |  |  |  |
| _ |  |  |  |  |
| _ |  |  |  |  |
| _ |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |