Cardiovascular Considerations during Bone Marrow Transplantation

Daniel J Lenihan, MD
Professor, Division of Cardiovascular Medicine
Director, Cardiology Clinical Research
Cardio-Oncology Program
Vanderbilt University

Presenter Disclosure Information
BMT Tandem Meeting: San Diego CA, 2/2015

I will not discuss off label use or investigational use in my presentation.
I have financial relationships to disclose:
• Research support from: Acorda, Inc; Millennium, Inc.
 Consultant (modest): Roche, Onyx, Incyte

Cardiovascular (CV) Considerations during Bone Marrow Transplantation (BMT)

Objectives:
• Describe common cardiovascular issues encountered during BMT
• Identify high risk populations for cardiac complications during transplant
• Explain strategies to minimize complicating medical issues
• Recognize current clinical research gaps and discuss proposals for ongoing projects
Cardiovascular Considerations during BMT
Potential serious cardiac complications

- QT prolongation/Rhythm disturbances
- Heart Failure
- Myocardial injury
- Endovascular Infection

Cardiovascular Considerations during Bone Marrow Transplantation

Objectives:
- Describe common cardiovascular (CV) issues encountered during bone marrow transplant (BMT)
- Identify high risk populations for cardiac complications during transplant
- Explain strategies to minimize complicating medical issues
- Recognize current clinical research gaps and discuss proposals for ongoing projects

What is the best CV recommendation in preparation for BMT?
A case story

- 66 y/o M, with previous coronary disease (CAD) and aortic valve replacement (AVR) in 2006 developed NHL lymphoma, initially diagnosed in 1/2012
- He was initially treated with anthracycline based therapy for 4 cycles
- He tolerated this until he had heart failure (HF) and a resultant left ventricular ejection fraction (LVEF) of 35%
- Achieved remission at 4 cycles
Case study (cont’d)

- Past hx: Hypertension (HTN), hyperlipidemia, CAD s/p bypass x3 with AVR on carvedilol 6.25mg bid, atorvastatin 40 mg, aspirin, furosemide 40mg, and lisinopril 20mg.
- 3 months after chemo, he developed chest pain and reportedly got a drug eluting stent in the right coronary artery (8/2012)
- He was then seen in December 2012 and was asymptomatic
- Now he has recurrent disease, received 2 cycles of non-anthracycline based therapy (RICE), and is potentially getting a stem cell transplant

Physical Exam and Labs

- 124/77, HR 61, R 18, afebrile
- Jugular venous pressure (JVP) 8 cm. Lungs: few basilar crackles. Cardiac exam: loud S4, PMI enlarged
- No edema, good distal pulses
- Na 136, Cr .9, Cl 21.
- Hgb 11.5, plt 216, LDL 74
- B-type natriuretic peptide (BNP) 107, trop I 0.01

ECG Now
Echocardiography and BNP over time

• Echo 5/2013:
 AV velocity 3.1 m/sec
 LVEF 45-50%

• Previous echos:
 1/12 LVEF 60
 2/12 LVEF 53
 4/12 LVEF 35
 7/12 LVEF 20
 8/12 LVEF 34
 2/13 LVEF 45-50

• BNP
 327 (12/2012)
 147 (2/2013)
 107 (5/2013)
 296 (6/2013)

So what is the best recommendation?

- Further Pre-BMT evaluation?
- Stop clopidogrel, aspirin?
- Go ahead and take your shot?

What is the risk of a drug eluting stent prior to a procedure?
LVEF 38%; RVEF 42%
What do you say now?
- Is he stable to proceed?
- How risky is this BMT?
- Would you do anything else?
 - Consider dental evaluation

Pre-stem cell risk factors are very important

Cardiovascular Considerations during Bone Marrow Transplantation

Objectives:
- Describe common cardiovascular issues encountered during BMT
- Identify high risk populations for cardiac complications during transplant
- Explain strategies to minimize complicating medical issues
- Recognize current clinical research gaps and discuss proposals for ongoing projects
Cardio-Oncology: How do we manage co-morbidities during BMT?

- 64 y/o with myeloma and amyloidosis (cardiac involvement) who is being treated with bortezomib, lenalidomide for 6 months (on maintenance now) and has achieved a remission
- He is being considered for an autologous BMT

Case 2: Myeloma with amyloid

- PMH: HTN, hyperlipidemia, chronic kidney disease, HF, CAD, AV nodal re-entry tachycardia with AV nodal ablation
- Deep venous thrombosis, sleep apnea
- Meds: carvedilol 6.25mg bid, aspirin, pravastatin 20mg, allopurinol, furosemide

Current ECG
Recent Echo Case 2: Phys Exam and Labs

- BP 130/78, P70
- 8-9 cm JVP, lungs clear, loud S4, 1+ edema
- BUN/Cr 58/2.0, trop I 0.09, BNP 221
- Maximal oxygen consumption (MVO2) = 12.7
- Recent cath: 40-60% circumflex, 30-40% right coronary artery
- Right heart cath: Pulmonary artery 44/20 mm Hg, mean wedge 22, Fick cardiac index 2.71 (CO=6.4 l/min)

BMT and CV Issues:
How do we manage these?

- So what are the effective pre-op evaluations?
- Can he be optimized better?
The further reduced the cardiac output, the worse the arrhythmia risk

Biomarkers may be helpful in identifying developing toxicity

Prevention of Cardiotoxicity is possible

Bosch, X et al, JACC 2013, p 2355
Cardiovascular Considerations during Bone Marrow Transplantation

Objectives:
• Describe common cardiovascular issues encountered during BMT
• Identify high risk populations for cardiac complications during transplant
• Explain strategies to minimize complicating medical issues
• Recognize current clinical research gaps and discuss proposals for ongoing projects

Patients with myeloma have marked and significant reductions in quantitative measures of physical function for years after the initial therapy

Tuchman, SA, et al, Clinical Lymphoma, Myeloma & Leukemia, 2014
Statin therapy prior to and during chemotherapy was protective

Are there things on the cancer therapy horizon that could be concerning for cardiomyopathy?

There is a balance between protein synthesis and degradation
A report of 6 cases describing carfilzomib related cardiac dysfunction and the patterns of cardiotoxicity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carfilzomib Exposure Dosing (mg/m²)</td>
<td>20x1 then 27</td>
<td>27</td>
<td>20</td>
<td>20</td>
<td>27</td>
<td>20x1 then 27</td>
</tr>
<tr>
<td>Duration of Therapy (mos)</td>
<td>35</td>
<td>6</td>
<td>13</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cumulative Dose (mg/m²)</td>
<td>405</td>
<td>903</td>
<td>972</td>
<td>141</td>
<td>540</td>
<td>444</td>
</tr>
<tr>
<td>Baseline NYHA Class</td>
<td>III</td>
<td>III</td>
<td>I</td>
<td>III</td>
<td>I</td>
<td>III</td>
</tr>
<tr>
<td>LVEF</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>BNP (pg/mL)</td>
<td>N/A</td>
<td>79*</td>
<td>594*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Troponin</td>
<td>N/A</td>
<td><0.05</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Worst NYHA Class</td>
<td>III</td>
<td>II</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>III</td>
</tr>
<tr>
<td>Nadir of LVEF (%)</td>
<td>25</td>
<td>30</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Highest BNP or NT-proBNP† (pg/mL)</td>
<td>1837†</td>
<td>170†</td>
<td>2988†</td>
<td>2026</td>
<td>640</td>
<td>744</td>
</tr>
<tr>
<td>Highest Troponin</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>2.5</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Recovery Carfilzomib Discontinuation</td>
<td>Permanent</td>
<td>Temporary</td>
<td>Permanent</td>
<td>Permanent</td>
<td>Permanent</td>
<td>Temporary</td>
</tr>
<tr>
<td>Heart Failure Therapy Initiated</td>
<td>Beta-blocker; ACE-I; loop diuretic</td>
<td>None</td>
<td>Beta-blocker; ARB</td>
<td>Beta-blocker; ACE-I</td>
<td>Beta-blocker; aldosterone antagonist</td>
<td>Beta-blocker; aldosterone antagonist; loop diuretic</td>
</tr>
<tr>
<td>Best NYHA Class</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>Highest LVEF</td>
<td>40</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>Lowest BNP (pg/ml)</td>
<td>65</td>
<td>104</td>
<td>2032</td>
<td>39</td>
<td>470</td>
<td>110</td>
</tr>
</tbody>
</table>

Properties of bortezomib and the second-generation proteasome inhibitors

<table>
<thead>
<tr>
<th>Proteasome Inhibitor</th>
<th>K_{cat}/K_{m} (nM)</th>
<th>I_{50} NF (nM)</th>
<th>Dissociation K_{d} (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bortezomib</td>
<td>2.4-7.0/590-3200/24-74 (16,18,25)</td>
<td>36-40 (14,25,39)</td>
<td>110 [18]</td>
</tr>
<tr>
<td>MLN224808 [18]</td>
<td>3.4/5500/31</td>
<td>62</td>
<td>18</td>
</tr>
<tr>
<td>CEP-13770 [18,26]</td>
<td>3.8-100-100</td>
<td>NR</td>
<td>NR — slowly reversible</td>
</tr>
<tr>
<td>Carfilzomib [14]</td>
<td>6/3600/2400</td>
<td>NR</td>
<td>Inversible</td>
</tr>
<tr>
<td>PR-047 [21]</td>
<td>36/NR/NR</td>
<td>NR</td>
<td>Inversible</td>
</tr>
</tbody>
</table>

Abbreviations: IV, intravenous; WCL, mantle cell lymphoma; MM, multiple myeloma; NR, not reported; SC, subcutaneous.
CV Considerations during BMT

Conclusion

- Pre-stem cell assessment and medical optimization is crucial
- During BMT careful adjustment and monitoring can prevent major issues
- Risk factor modification after BMT is needed
- Collaboration among disciplines is the key
ARS Question #1

What major cardiac concerns are there when a patient undergoes BMT?

a. Arrhythmias/QT prolongation
b. Heart Failure
c. Myocardial injury
d. All of the above

ARS Question #2

Identify which one of the major baseline cardiac risk factors for the development of cardiac events is least important:

a. Chest radiation
b. Prior anthracycline use
c. Hypertension
d. Coronary Disease

ARS Question #3

Treatment with what cardiac medications is not beneficial before or during chemotherapy or bone marrow transplant?

a. Clopidogrel
b. Atorvastatin
c. Enalapril
d. Carvedilol